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Abstract
As an emerging technology and business paradigm, cloud computing has
seen a stable growth in the past few years, becoming one of the most
interesting approaches to high-performance computing. Thanks to the high
flexibility of these platforms, more applications get redesigned every day to
follow distributed computing models.

In the domain of network operators, recent technological trends led to
replacing traditional physical networking infrastructures with more flex-
ible cloud-based systems, which can be dynamically instantiated on de-
mand to provide the required level of service performance when needed. In
this context, the paradigm represented by Network Function Virtualization
(NFV) aims to replace most of the highly specialized hardware appliances
that traditionally would be used to build a network infrastructure with
software-based Virtualized Network Functions (VNFs), which are equiva-
lent implementations of the same services provided in software instead of
hardware. This brings new flexibility in physical resources management
and allows the realization of more dynamic networking infrastructures.

In this context, a number of network functions need high-performance
and low end-to-end latency, where a key role is played by the communica-
tion overheads experienced by the individual software components partici-
pating in each deployed VNF. Such requirements are so tight that NFV has
already moved on from traditional Virtual Machines (VMs) to Operating
System (OS) containers to deploy VNFs on the designated infrastructure.
Primary research focus is now into reducing per-packet processing over-
heads by using user-space networking techniques, allowing applications to
avoid the kernel when exchanging data between containers, either on the
same machine or between different hosts. These techniques are generally
indicated as kernel bypass mechanisms.

Contribution

In this thesis, a benchmarking framework has been designed and realized,
for the purpose of comparing different kernel bypass mechanisms that can
be used to exchange data between VNFs deployed on OS containers within
a private cloud infrastructure, to determine which is the most suitable to
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build efficient network infrastructures in the cloud. Among these mecha-
nisms, this work focuses on the evaluation of the Data Plane Development
Kit (DPDK) framework and other tools that are built on top of it (e.g.
software virtual switches), as DPDK occupies a prominent position in the
industry and provides most of the functionalities needed to bypass the
kernel when exchanging network packets, either locally or with an actual
hardware Network Interface Controller (NIC). Evaluations are done com-
paring software virtual switches against a Single-Root I/O Virtualization
(SR-IOV) enabled network card, which provides a hardware implementa-
tion of local switching functionalities. This study compares the perfor-
mance achieved by each different solution with respect to a number of key
metrics, namely network throughput, latency and scalability, when subject
to synthetic workloads simulating the behavior of real VNF components
communicating with each other.
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Chapter 1

Introduction
Over the past few years, more and more applications shifted to a dis-
tributed computing paradigm to provide lots of new services, thanks to
the widespread availability of affordable high-speed Internet connections.
In a relatively short period of time, the Internet has become a critical
infrastructure for global commerce, media and other services. However,
the increased complexity of modern network infrastructures represents an
obstacle to their evolution into more flexible and dynamic systems.

In the current Internet, IP datagrams have to get through a number
of intermediate nodes whose purpose is no longer simply forwarding them
until they reach their final destination. Instead these middle-boxes are re-
sponsible for implementing a great number of other features directly within
the network infrastructure itself, such as address translation, packet inspec-
tion, filtering, Quality of Service (QoS) management, and so on. This way,
network operators try to offer a greater number of services at the lowest
level, removing the need for developers to support some features at a higher
level of the stack, usually in the application layer.

These new services are traditionally supported in a network infrastruc-
ture by introducing highly specialized network appliances that rely on cus-
tom hardware to inspect and transform IP datagrams as they traverse them
towards their destination. However, the adoption of this approach has in-
creased the resilience of network infrastructures to the introduction of dis-
ruptive new technologies (like would be for example a new transport-level
protocol), due to the proprietary nature of existing hardware appliances
(which may modify not only the header but also the content of an IP data-
gram with their processing, dipping into contents of higher-level protocols)
and the cost of offering the space and energy to host a variety of middle-
boxes within a network infrastructure. This contributes to a phenomenon
called Internet ossification, which means that it is difficult to introduce new
changes to the current state of the whole Internet infrastructure [2].

In this context, an interesting approach to tackling the problem of In-
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CHAPTER 1. INTRODUCTION

ternet ossification implies the use of virtualization techniques to transition
from a mostly hardware-oriented approach to a software-oriented one when
implementing new network functions. This is done mostly to leverage the
characteristics of modern cloud infrastructures, that are able to provide
high levels of flexibility in resource management, especially for those ap-
plications that are subject to big variations in service demand over time.
Given the cost-effectiveness of this approach, cloud computing solutions are
progressively replacing traditional dedicated infrastructure management.

In the case of network operators, the adoption of the cloud model to
introduce new functions to be implemented within the network led to the
introduction of Network Function Virtualization (NFV). NFV aims to move
those functionalities that were once implemented with middle-boxes to soft-
ware applications that can run on off-the-shelf programmable hardware (i.e.
industry standard servers, storage, and switches) within a private cloud in-
frastructure. This can solve a whole group of problems that traditionally
affect network operators, like dimensioning correctly the whole infrastruc-
ture.

Since service unavailability is typically thought unacceptable, network
carriers usually overprovision their services [3], thus the utilization of the
overall allocated resources is normally low, both because of the fluctuations
in demand of traffic and the offered redundancy in the case of service failure.

Taking advantage of the cloud model, the network infrastructure could
dynamically resize itself depending on the amount of traffic that needs to
be processed, concentrating the workload on a reduced number of servers
and allowing the rest to be either turned off to save energy or be used
to provide other services, like general web services, content and software
distribution, etc.

Since the overall goal is to implement in software virtual functions to
be executed through virtualization technologies on general-purpose servers,
one of the most important aspects to be considered is whether performance,
such as throughput and latency, is affected by this transition from custom
hardware appliances. For many of the network functions, the performance
of virtualized network appliances is the first concern [4].

Traditional cloud-based platforms rely on full virtualization, through
the use of Virtual Machines (VMs), to provide a standard environment for
each application running in the cloud, such as network functions, and to
abstract the actual organization of the infrastructure itself. This allows for
high levels of manageability of the whole virtual infrastructure, with the
possibility to dynamically allocate and scale hardware resources for each
virtual machine and even migrate them from one host to another without
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CHAPTER 1. INTRODUCTION

disrupting the continuity of service, thanks to live migration.
To achieve these results it is also necessary to attain resource separa-

tion with a sufficient level of isolation. This can impact the overall per-
formance of each network function, especially when performing operations
that involve shared hardware resources like I/O devices and peripherals.
Full virtualization techniques, which rely on Virtual Machines (VMs) to
achieve isolation and virtualization, can result in significant slowdowns
compared to performance of bare-metal applications, due to big per-packet
overheads when exchanging data among VMs. While these costs can be
better amortized using bigger packets, most applications that exchange
very small packets suffer unbearable costs when deployed within VMs.

Solutions like hardware-assisted virtualization and para-virtualization
can improve the overall performance of applications inside virtual machines,
but most systems that adopt NFV paradigm prefer to adopt Operating
System (OS) containers as virtualization providers (e.g. Docker [5], LXC [6],
etc.), as they represent a more lightweight solution to the virtualization
problem, despite introducing some limitations with respect to actual virtual
machines [7].

Moreover, in order to reduce even further the per-packet processing
overheads, and at the same time allow for the maximum flexibility in terms
of packet processing by each Virtualized Network Function (VNF), plenty
of experimentation is being done on the use of user-space networking, as op-
posed to traditional TCP/IP based management of network packets within
an OS kernel or hypervisor. For this purpose, a number of different kernel
bypass1 techniques have been introduced over the years, among which a
prominent position in the industry is played by the Data Plane Develop-
ment Kit (DPDK) [8], which is a set of data plane libraries and drivers
developed by Intel for fast packet processing in user-space.

Considering in these scenarios more than one VNF may be allocated
on the same host, a key functionality that needs to be preserved is the
virtual switching among multiple containers within the same host, both
for local communications (between two containers on the same host) and
remote ones (two containers located on different hosts). This led to the
introduction of a number of software network switches implementations
(e.g. Open vSwitch), as well as the introduction of hardware support for
virtual switching, like the one provided by Single-Root I/O Virtualization
(SR-IOV) Ethernet controllers [9].

1For more info see https://lwn.net/Articles/629155/
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CHAPTER 1. INTRODUCTION

1.1 Problem Addressed in This Work

Since there are a variety of different solutions that may be considered when
building an infrastructure using the VNF paradigm, we have witnessed an
increasing interest over the past few years in the analysis of the actual
performance that these solutions are able to achieve with respect to each
other, to guide network operators towards this or that choice when moving
to the new paradigm. The goal of this work is to provide a tool that can
be easily deployed on a private cloud infrastructure to evaluate the actual
performance that different virtual switching solutions (either software or
hardware) are able to achieve with respect to each other.

Part of the contents of this Thesis are also included in a paper [1]
presented at the 14th Workshop on Virtualization in High-Performance
Cloud Computing (VHPC 2019), as part of the International Supercom-
puting Conference - High Performance (ISC 2019), held on June 20, 2019
in Frankfurt, Germany. In this occasion, this work stimulated the interest
of the audience, proving its importance for representative members of both
HPC industry and academic community.

1.2 Document Outline

This thesis is organized as follows. Chapter 2 describes the characteristics
of NFV, the advantages with respect to legacy middle-boxes and the chal-
lenges that it introduces when moving from hardware to software-based
network functions. Chapter 3 illustrates various techniques that can be
used to achieve high performance communications between virtualized en-
vironments, with particular focus on high-performance oriented solutions.
Chapter 4 shows the characteristics of the framework that has been de-
veloped to evaluate the performance of various virtual switching solutions
when applied in NFV scenarios. Chapter 5 contains the experimental re-
sults obtained using said framework in a real use-case. Finally, Chapter 6
presents our conclusions and shows the improvements planned in our future
work.
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Chapter 2

Network Function Virtualization
In this chapter we describe more in detail the concepts behind Network
Function Virtualization (NFV), the motivation behind its introduction, the
terminology introduced by NFV used throughput this document, and what
are its advantages and the challenges that need to be faced when adopting
to this new approach to build a network infrastructure.

2.1 Motivation Behind NFV

In traditional networking infrastructures there are generally a lot of for-
warding or processing devices that transmit, transform, filter, inspect or
control network traffic for the purpose of network control and manage-
ment [10], generically called middle-boxes. Examples of such devices are
Network Address Translators (NATs), firewalls, Intrusion Detection Sys-
tems (IDS) etc. A more detailed taxonomy of middle-boxes can be found
in [11]. Due to the heterogeneity of services in use within a network, the
number of middle-boxes is increasing constantly over the years. Recent
studies showed that for many enterprise networks, differing in network
sizes, the number of middle-boxes is comparable to its number of hosted
routers [12]. All these proprietary devices require a lot of management ef-
fort to effectively be configured, upgraded, monitored and integrated with
all the other components of the network infrastructure via long and com-
plex deployment processes, which inevitably increases the time needed to
launch new network services [13].

In addition to the growing amount of middle-boxes, their characteris-
tics represent a problem for the dynamicity of the network infrastructure,
since they need to be physically placed in between other components and
they cannot be easily moved or shared, let alone scaled depending on the
dynamic needs of the network traffic. This contributes more and more to
networks ossification and represents an obstacle to their flexibility [2] and
forces network operators to overprovision their services, achieving usually
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NFV-based approachTypical network appliances
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Figure 2.1: NFV main goal is to transition from complex physical network
equipment to equivalent virtual appliances deployed on a cloud.

very low utilization of allocated resources [3].
Network Function Virtualization (NFV) aims to improve the flexibility

of network services by leveraging virtualization technologies and commer-
cial off-the-shelf programmable hardware, such as general-purpose servers,
storage and switches [14]. The main goal of NFV is to decouple the soft-
ware implementation of network functions from the underlying hardware
by decoupling functionality from location (to some extent, and compatibly
with the latency constraints) for faster networking service provisioning [15],
as shown in Fig. 2.1.

Since NFV implements network functions through software virtual-
ization techniques and runs them on commodity hardware (i.e. standard
servers, storage, and switches), these virtual appliances can be instantiated
on demand without the installation of new equipment, thus reducing the
expenditure needed to upgrade or maintain the whole network infrastruc-
ture. This would definitely benefit network service providers, which need
to periodically scale up their physical infrastructure, incurring in high Cap-
ital Expenditures (CAPEX) and Operating Expenses (OPEX) [16]. Due
to the separation of network function from hardware, NFV can effectively
reduce both CAPEX and OPEX. With NFV, the infrastructure can be usu-
ally dimensioned on the aggregate demand, which is more stable as it can
leverage phenomena like statistical multiplexing, and dynamically scale it
on demand using techniques typically adopted in cloud computing.

For this purpose, general-purpose Commercial Off-the-Shelf (COTS)
network equipment (e.g., x86 based hardware), can provide far more capac-
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CHAPTER 2. NETWORK FUNCTION VIRTUALIZATION

ities than required with less cost than specialized network equipment [13].
Many works demonstrated over the past few years that it is feasible to im-
plement network functions on general-purpose processor-based platforms,
for example, for physical layer signal processing [17] and components in
cellular core networks [18].

The introduction of NFV is also motivated by other situations (e.g. the
difficulty to provide reliable IP multicast services on heterogeneous net-
working infrastructures, functional split for C-RAN scenarios, etc.), how-
ever it is out of the scope of this document to show them all. For other pur-
poses refer to European Telecommunications Standards Institute (ETSI)
white papers [15, 19].

2.2 Key Concepts and Characteristics

Given the problematic situation of the industry related to traditional middle-
boxes integration and management, over twenty of the world’s largest
telecommunication operators, including American Telephone & Telegraph
(AT&T), British Telecom (BT), Deutsche Telekom (DT), China Mobile,
Orange, Telefónica, Verizon, and others, formed an Industry Specification
Group (ISG) within the European Telecommunications Standards Institute
(ETSI) to define Network Function Virtualization (NFV) in 2012 [3]. Over
the years, the ISG has grown into a large community, spanning over four
working groups and two expert groups: Infrastructure Architecture, Man-
agement & Orchestration, Software Architecture, Reliability & Availability,
Security, and Performance & Portability.

After the initial NFV specification [15], updated and improved over
the years [20, 21], ETSI has published several specifications and guidelines
for network operators that intend to move to a NFV-based infrastructure.
In particular, they published works regarding management and orchestra-
tion [22], architectural framework [23], infrastructure overview [24] (includ-
ing descriptions of compute domain [25], hypervisor domain [26] and net-
work domain [27], service quality metrics [28], resiliency [29], and security
and trust [30].

2.2.1 Main Terminologies

In this section we present the main terminologies introduced with NFV
that are also used throughput this document:

Physical Network Function (PNF) It is the implementation of a spe-
cialized network function via a tightly coupled software and hardware

14
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system. This term can be used either to refer to a network node or
to other physical appliance.

Network Function Virtualization Infrastructure (NFVI) It is an en-
vironment in which network components, either hardware or software,
can be deployed, managed and executed. A single Network Func-
tion Virtualization Infrastructure (NFVI) can span over multiple ge-
ographic locations and the connections between these places are also
part of the NFVI itself.

Management and Orchestration (MANO) The Management and Or-
chestration (MANO) is the entity that is in charge of managing the
new capabilities introduced by NFV inside the network infrastruc-
ture. In particular it is responsible for NFVI management, resource
allocation and configuration, function virtualization, etc.

Virtualized Network Function (VNF) A VNF is a software imple-
mentation of a network function, which can be deployed on the NFVI.
The VNF shall provide an equivalent functional behavior with respect
to a physical implementation and it may be composed of one or more
components. Each component is usually deployed as a VM, which
means that the VNF can be deployed on a single VM if composed
by only one component. Components for each VNF can be deployed
independently across the NFVI.

Network Point of Presence (N-PoP) ANetwork Point of Presence (N-
PoP) represents a single location where Physical Network Functions
(PNFs) and VNFs can be implemented/deployed.

The relationships among these terminologies are shown in a graphical
way in Fig. 2.2, in which they are placed in a layered structure.

The overall goal of NFV is to have a whole NFVI where PNFs are rep-
resented only by industry-standard L2/L3 switches, which mostly support
only conventional or other kinds of routing protocols (e.g. OpenFlow), and
all other network functions are implemented with VNFs. Of course, it is
unreasonable to expect for an entire infrastructure to have all specialized
network functions implemented as VNFs overnight, thus the coexistence
between VNFs and PNFs is inevitable [13]. It is a duty of MANO to main-
tain a global view of the whole infrastructure and coordinate both PNFs
and VNFs for fast and cost-effective service provision.
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Figure 2.2: The relationship of different terminologies within an end-to-end
service.

2.2.2 NFV Architecture

In networking infrastructures we often have a differentiation between what
are called the data plane and the control plane. The former is composed
of all the resources to run all network services, where each function is
responsible for data forwarding and processing. The latter is made of all
the orchestrators and the actors within the infrastructure that take decision
about traffic management, resource allocation, etc. In NFV, the data plane
corresponds to the NFVI, while the control plane corresponds to MANO.
In addition, since most actual components within the infrastructure are
virtualized, a network based on NFV requires a virtualization layer, which
hosts various kinds of VNFs hosted as virtualized components.

The complete architectural scheme of a NFV-based network is depicted
in Fig. 2.3, where relationships between all components have been high-
lighted.

Network Function Virtualization Infrastructure

NFVI provides fundamental services for fulfilling the objectives of NFV [24].
To do that, a set of general-purpose network devices are deployed in dis-
tributed locations, depending on the requirements in terms of both latency
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Figure 2.3: ETSI NFV Reference Architecture.

and throughput, on which VNFs are deployed in virtualized environments.
Starting from this statement it is natural to divide the whole infrastructure
in three distinct layers, that is, physical infrastructure layer, the virtual-
ization layer and the virtual infrastructure layer, as shown in Fig. 2.3.

Physical Infrastructure Layer It is the set of all general-purpose servers
that provide the computation and storage capacities for all the net-
work services. In particular, we usually distinguish between compute
nodes and storage nodes, interconnected by means of networking in-
terfaces. Compute nodes are represented by general purpose servers,
realized in the form of single-core or multi-core processors. Storage
nodes are devices capable of storing information temporally or per-
manently, and they can be separate devices with respect to compute
nodes, often implemented through Network Attached Storage (NAS)
or Storage Area Network (SAN). Finally. Networking hardware is
composed ideally of industry-standard L2/L3 switches, providing just
basic forwarding functionalities for the more complex functions, which
are virtualized, although in a transitory phase some PNF may still
be present within the network, waiting to be replaced by equivalent
software implementations.

Virtualization Layer It is the software platform on which all VNFs are
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deployed, each within one or more isolated environments (e.g. VM
or containers). It is usually constituted by hypervisors (e.g. Linux
KVM [31], Citrix Hypervisor (formerly XenServer) [32], VMware
vSphere [33], etc.) or other forms of OS-level virtualization platforms,
(e.g. Docker [5], LXC [6], etc.). The difference between the two, ex-
plained more in detail in Section 3.1, is that the latter do not need
to instantiate completely separated systems to run virtualized appli-
cations: virtual functions run directly on the host OS and they are
isolated by means of access control policies like control groups and
namespaces. In that they are able to save resources and reduce the
overhead on the hosted applications, which can run faster, but they
are also subject to other security issues due to the lack of actual
isolation between VNFs (see Section 3.1.2).

Virtual Infrastructure Layer It is the collection of all virtual resources
(i.e. virtual compute, storage, and networking) that are allocated
to each VNF from the bottom layers. These resources are created
from the allocation of actual physical resources from the hypervisor
or other management software, which allow resources to be man-
aged in virtual pools and assigned to virtual functions on demand.
Examples of these resources are compute resources (i.e. CPUs), stor-
age (e.g. by means of SAN, NAS, etc.), and networking equipment.
The latter is particularly relevant for the performance of most virtual
functions, which often need to exchange data between components
efficiently both in terms of throughput and latency. Virtual network-
ing is similar to traditional computer networking, but its implementa-
tion is mostly software-driven, usually in the form of virtual Ethernet
adapters and virtual switches. For more details refer to Chapter 3.

Although the basic structure and functionalities associated with NFVI
are well outlined by ETSI NFV ISG, implementations may differ greatly
from each other, since the specifications do not enforce any precise indica-
tion about how infrastructure requirements should be achieved [13].

Management and Orchestration (MANO)

The role of NFV Management and Orchestration (MANO) is to act as a
manager for the entire virtualized context within the network infrastruc-
ture. In particular, this includes managing all hypervisors and virtual-
ization mechanisms, resources allocation, life cycle management of VNF
instances, etc. According to ETSI, there are three main responsibilities as-
signed to MANO within NFV: the Virtual Infrastructure Manager (VIM),
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VNF Managers (VNFMs), and the NFV Orchestrator (NFVO). In partic-
ular, NFV Orchestrator (NFVO) is mainly responsible for orchestrating
NFVI resources and managing VNF life cycles, which are chained accord-
ing to NFVO specification to provide the requested network service. Of
course in terms of performance this organization must be performed taking
into account the optimal VNF placements and forwarding paths that are
formed to provide the demanded service.

Depending on the instructions of the NFVO, the Virtual Infrastructure
Manager (VIM) and the VNF Managers (VNFMs) comply by managing
respectively how hardware resources are allocated to each virtualized en-
vironment and where and how VNFs and Virtual Network Function Com-
ponents (VNFCs) are deployed within the virtualized infrastructure. More
in details, VNFMs are responsible for VNF instantiation, updating, migra-
tion and termination, while the VIM manages and controls NFVI resources,
such as network, compute and storage.

Some responsibilities of NFVO, VNFM and VIM are partially overlap-
ping, which means that actual implementations may differ in how these
features are distributed between these three components. The specifica-
tion describes the three as tightly coupled components that interact with
each other to provide the aforementioned functionality.

Virtualized Network Functions

NFV is intended to abstract PNFs and finally implement them in the form
of software (i.e. VNF), which means that all the other parts of the infras-
tructure are necessary to support the actual virtual functions that shall be
deployed. The structure of the VNF layer is then composed by a collection
of many isolated VNF instances, as illustrated in the top of Fig. 2.3. In the
figure it is also shown how some VNFs may also be implemented as a col-
lection of multiple Virtual Network Function Components (VNFCs), which
can be independently deployed on isolated environments and together pro-
vide the combined functionalities of the whole VNF. All VNFs and VNFCs
are managed by MANO, which is responsible for VNFs instantiation, up-
date, query, scaling and termination.

In principle, all network functions and other network elements can be
considered for virtualization. As PNFs provide network functions in the
physical network, VNFs play the same role within the virtual network en-
vironment, thus can be organized and interconnected to make up the de-
sired service chain. However, VNFs can be chained even when deployed
on different positions in the physical network, and the resulting network is
thus more flexible and dynamic, since VNFs location can be dynamically
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selected depending on the current requirements of the network users.
It is important to notice that VNFs may have a number of different

roles within a network infrastructure, not all of them related to the data
plane. For example, some VNFs may act as software-based controllers and
monitors on behalf of network orchestration services. For the rest of our
dissertation however we will refer only VNFs in the application layers, that
is all VNFs that are actually involved in the forwarding and processing of
network traffic.

Most VNFs can be implemented in two kinds of virtualized environ-
ments. The first approach is to use full fledged VMs like the ones offered
by VMware vSphere [33], Linux KVM [31], Citrix Hypervisor [32], etc.
The second is to use OS-level virtualization, that is to deploy VNFs inside
containers provided by Docker [5] or LXC [6]. Each solution has its own
advantages and disadvantages. While VMs can be better isolated from
each other, since each application runs in an isolated environment of a real
computing machine, containers only duplicate the necessary applications
and resources that cannot be shared with other applications. The most ob-
vious results of these different approaches are that VMs can provide greater
levels of isolation security between applications and can even run applica-
tions that were designed for different operating systems/architectures in
emulation mode, at the cost of higher overheads. Containers are a more
lightweight solution [34, 35], but since they share some resources, most
notably the operating system kernel, security concerns may arise due to
possible interference between containerized applications [34, 36, 37]. These
characteristics of the two technologies could be used to determine whether
they could be of use when designing a network architecture. For example,
containers may not be suitable for being used within public cloud infras-
tructures [7, 38], since they do not provide enough isolation guarantees
among tenants, but they could be suitable for private cloud environments,
in which applications could be considered more trustworthy. For a more
detailed exposition about virtualization techniques applied in this context,
refer to Chapter 3.

In addition to the environments illustrated above, it is also important
to notice that part of the networking operations between VMs or containers
are performed by hypervisors and other virtual networking software, thus
some VNFs may be actually implemented as part of the hypervisor itself,
while most of the more specialized network functions are usually imple-
mented as applications to be deployed within a VM. For example, VMware
vSphere [33] provides a virtual NAT implemented directly within the hy-
pervisor to allow VMs to communicate with the host without polluting the
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global address space.

2.3 NFV Challenges

While the benefits of NFV captured the interest of many major network
operators, there are a certain number of challenges that need to be solved
when deploying virtual appliances in a real scenario.

When talking about software-based implementation of network func-
tions through virtualization technologies on general-purpose servers, it is
extremely important to know whether the performance, such as through-
put and latency, will be affected. The per-instance capacity of a VNF may
be less than the corresponding physical version on dedicated hardware. Al-
though it is hard to completely avoid performance degradation, we should
keep it as small as possible while not impacting the portability of VNFs on
heterogeneous hardware platforms. What’s more, many network functions
are designed to work with protocols developed for physical implementa-
tions of such functions and thus they have very tight requirements both
in throughput and latency between various components. Previous works
showed that virtualization may lead to abnormal latency variations and sig-
nificant throughput instability even when the underlying network is only
lightly utilized [39]. Ensuring that network performance achieved by virtu-
alized functions are at least as good as the ones of purpose-built hardware
implementations is the most crucial challenge in realizing NFV [4].

The separation of functionality from location also creates the problem of
how to efficiently place the virtual appliances and dynamically instantiate
them on demand. The NFV infrastructure should also be able to instan-
tiate VNFs in the right locations at the right time, dynamically allocate
and scale virtualized resources for them, and interconnect them to achieve
service chaining. This introduces a new challenge, as the cost and value
of resources may vary significantly between network points and customer
premises. MANO functionalities should take in account all these variations
and optimize resource usage across the whole infrastructure, compatibly
with the timing constraints and performance requirements of each service.
To do so, tools and technologies developed for Software-Defined Network-
ing (SDN) may be extremely useful, as NFV and SDN are closely related
to each other. SDN is a networking paradigm that decouples the control
plane (where MANO decisions take place) from the underlying data plane
and consolidates the control functions into a logically centralized controller.
NFV and SDN are mutually beneficial, as both promote the innovation of
new technologies for a more dynamic approach to networking.
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Another relevant challenge that network operators will face when mi-
grating existing network infrastructures to NFV is the integration between
already-existing PNFs inside the infrastructure, since not everything can
be immediately virtualized at the same time [40]. The smoothness of the
migration depends on the size of the existing network infrastructure and
the capability of managing a solution that requires both custom PNFs and
VNFs to operate together.
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Chapter 3

High Performance
Communications in Virtualized

Environments
One of the key aspects that need to be addressed when moving to a NFV-
based architecture is network performance when exchanging data between
VNFs, both from throughput and latency point of views.

In this chapter we address that problem from the virtualization perspec-
tive. After a brief illustration of the different virtualization techniques that
can be applied to build a NFV-based infrastructure, we show why some of
them are more suitable than others from a performance point of view. Then
we move on to the various techniques available to exchange data between
virtualized components, either on a single host or between multiple hosts,
focusing on the options that optimize system performance. Finally, some
related work in the field of performance analysis among virtual networking
solutions for NFV is presented.

3.1 Components and Virtualization

Virtualization is a technique that has various applications and advantages
when deploying software components within a networked infrastructure.
It has been widely accepted because of its characteristics such as elastic-
ity and flexibility in delivering on-demand resources (e.g. computational
power, storage, etc.). Nowadays, virtualization is used on cloud computing
platforms to provide a multitude of services and it is constantly evolving
to improve their efficiency and cost-effectiveness.

One of the key characteristics of virtualization is that it allows the cre-
ation of multiple virtualized computing environment within the same host.
This way, the resources available to a single host can be fully exploited,
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solving the problem of resources under utilization. In addition, these vir-
tualized environments, usually referred to as guests, are typically isolated
from each other. Applications running in different guests perform their
activities by interacting with an abstraction layer provided by the virtu-
alization platform instead of the actual resources they are using; this is a
key point to avoid any interference among different applications deployed
on the same host and to decouple each application from its actual deploy-
ment location. Furthermore, virtualizing applications increases the overall
security of the system, as additional checks can be performed by the virtu-
alization platform whenever an actual resource is accessed from any of the
virtualized environments.

3.1.1 Main Virtualization Techniques

In this section we present the various environment virtualization techniques
that can be applied to deploy applications on a general-purpose server
architecture. Each of them comes with its own advantages and drawbacks,
which will be discussed with respect to the NFV point of view.

Full Virtualization

A Virtual Machine (VM) instance represents an entire isolated environment
for one or multiple applications (e.g. hardware devices, storage, operating
system, etc.); usually multiple isolated environments can run independently
on the same host and multiplex its resources. This requires more resources
than the ones needed by the isolated applications, as the virtualization
mechanism needs to mediate interactions with the underlying hardware,
but the benefits of multiplexing applications in isolation usually justify the
overhead. VMs are usually instantiated, terminated and migrated between
hosts according to specifications of MANO, in order to provide the required
level of service. Since the decoupling of VMs from the actual hardware
present on a single host is necessary if we want to preserve the ability to
migrate them freely among hosts, it is often necessary to adopt what is
called hardware-level virtualization (or full virtualization), in which VMs
are provided an abstract execution environment in terms of hardware by the
Virtual Machine Manager (VMM), also called hypervisor. In this model,
each VM contains its own OS, which can even differ from the one running
on the host, and each interaction between the VM and the underlying
hardware of the actual machine is mediated by the hypervisor.

An obvious advantage of this technique is that VMs are fully isolated
from each other, at the point in which a system crash in one of the VMs
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(like a kernel panic) won’t affect the behavior of other unrelated VMs de-
ployed on the same host. Essentially, the hypervisor can emulate almost
every component of the hardware platform [41], although for NFV applica-
tions the two most common cases of emulation involve only I/O instructions
and privileged CPU instructions. Another key characteristic is that hyper-
visors can dynamically adjust the mapping relationship between physical
resources and virtual resources allocated to each VM to dynamically adapt
the system over time and enable higher levels of portability of the single
VM instances.

The most clear drawback of this scenario is that execution times of
applications within VMs are inevitably enlarged, both because of the emu-
lation of the instruction set when run on a different architecture and be-
cause of the required mediation from the hypervisor whenever hardware
resources are accessed (like when exchanging data via network devices).
This loss of performance can be very troublesome from a NFV perspective,
where a key role is played by the communication overheads experienced by
the individual software components participating in each deployed VNF.
Despite the various techniques to increase performance of VMs developed
over the years, like hardware-assisted virtualization or para-virtualization,
the requirements of typical NFV applications are so tight that NFV has
already focused on lightweight virtualization solutions based on OS con-
tainers, rather than traditional VMs.

OS-level Virtualization

OS-level virtualization, as opposed to full virtualization, achieves the ob-
jective of providing multiple isolated environments to applications, called
containers, by separating a single operating system environment into mul-
tiple user space instances. To do so, containers are created by recurring to
proper kernel-level encapsulation and isolation techniques. Thus, contain-
ers can be more efficient compared to VMs, because the former run directly
on the host OS while the latter run on the guest OS [38].

Although both containers and VMs are virtualization techniques, they
solve different problems: while VMs can provide to an application a whole
infrastructure if required (usually emulated), containers can only ship the
required software tools on top of the existing OS kernel to a target ap-
plication, like software shipped within a certain Linux distribution (e.g.
Debian, RHEL, etc.). This means that VMs act as a form of Infrastructure
as a Service (IaaS), while containers can only provide Platform as a Service
(PaaS) [42].

Examples of containers include LXC [6], Docker [5], OpenVZ [43]. Other
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companies also offer support for containers like Amazon Elastic Container
Service (ECS) [44] and Google Kubernetes Engine [45]. In addition, solu-
tions for containers orchestration and scheduling are becoming increasingly
popular [7], such as Google Kubernetes, Mesos, Cloudify, Docker Orches-
tration and Docker Swarm.

Mixed Virtualization Techniques

Based on OS containers and VMs, other virtualization technologies that
can be applied in the field of VNF have been developed over the past few
years, although their diffusion is still limited.

One of these approaches is to use what are called Clear Containers,
developed as part of the Clear Linux project and then included as part of
Kata Containers [46]. The main idea behind clear containers is to enhance
performance as primarily measured using two metrics: startup time and
memory overhead. These are the two most expensive operations when
a multitude of VMs must be spawned to perform very short tasks (less
than a second of actual execution time) for which a startup time of over 2
seconds and the memory footprint of an entire guest OS is too much. The
approach taken consists into distributing slightly modified versions of the
Linux kernel that support the execution of light VMs (usually with QEMU-
lite or a similar hypervisor) running in each VM the same version of the
Linux kernel already running on the host. In this way, the corresponding
boot-up time and image size are close to those of a container, while still
maintaining a high degree of isolation1.

Another interesting approach to application encapsulation and isolation
makes use of special VMs that are called Unikernels [47]. These are in fact
specialized VMs characterized by a single address space and constructed
by using library operating systems [48]. This means that each core func-
tionality provided by the OS is encapsulated within a library which can be
linked to the actual application. Within an unikernel image then only the
libraries actually used by the target application are included and nothing
else; basically an unikernel image is made of a single monolithic binary
that contains both the OS (stripped to the bare minimum required) and
the application [47]. The resulting VM images have both size and startup
times similar to a container image while maintaining the strong isolation
properties of a traditional VM. However, due to the special characteristics
of unikernels, the act of encapsulating an application within a VM is not
so straightforward and it requires a recompilation of a customized image

1For more info see https://lwn.net/Articles/644675/
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for each application, which has been demonstrated to be quite challeng-
ing, although automated build tools have been subject of recent research
activities2.

Since both clear containers and unikernels are solutions that address
the problem of VM instantiation and footprint, they are likely to be inter-
esting for applications in which VM instances are created and destroyed
frequently; however, this seems unlikely in NFV scenarios, for which it is
more important that very high-performance applications are executed for
quite some time after their instantiation. Hence we will not consider neither
clear containers nor unikernels in our next arguments.

3.1.2 Virtual Machines vs OS Containers

Many studies considered containers against VMs with respect to High Per-
formance Computing (HPC) applications performance, either CPU or I/O
intensive. Results show that LXC or Docker containers performance are
much higher than KVM VMs for HPC activities, both for CPU and com-
munication performance (network and inter-process), since the amount of
overhead introduced by containers is almost negligible with respect to bare
OS performance [34, 35]. The superior performance of LXC has been ob-
served for cluster environments, where there is more cooperation between
processes.

Although containers offer a great opportunity to reduce the overhead,
they also introduce many potential security issues due to the lack of iso-
lation from the hosts [34, 36, 37]. In particular, sharing the kernel among
various isolated application exposes each of them to the interference of the
others, in the sense that a single kernel crash caused by one of the ap-
plications can lead to an entire host shutdown, affecting the other VNFs
deployed on the same host. That’s why containers have a more practi-
cal application for NFV infrastructures realized with private cloud models
rather than on public infrastructures: for public cloud providers, interfer-
ence among multiple tenants is an unacceptable fault and applications de-
ployed within a private infrastructure can be considered more trustworthy
among each other. While VMs may still be one of the primarily solutions
adopted by public cloud providers, private infrastructures can potentially
leverage the performance increase introduced by containers in a mostly
secure way.

2For more info see https://xenproject.org/developers/teams/unikraft/
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3.1.3 OS Containers and Linux

The Linux kernel supports containers by proper configuration of control
groups and namespaces, which in combination create an environment in
which an application can only see and access those resources that are ac-
tually allocated to its container and nothing else. This creates a certain
degree of isolation among applications sufficient to deploy multiple appli-
cations on the same host. In particular, a process running in a namespace
has the illusion to interact with a dedicated copy of the resources within
the namespace and control groups regulate how these interactions can be
carried out without breaking the contract between the container and rest of
the OS. Various namespaces are included within the Linux kernel, each as-
sociated with a different kind of hardware or software resource that needs to
be isolated/virtualized. For instance, a network namespace can encapsulate
resources used by kernel network stack, like hardware or virtual interfaces,
routing tables, etc.

3.2 Inter-Container Communication
Techniques

When deploying applications within virtualized environments, including OS
containers, there are a number of different techniques that can be adopted
to interconnect each encapsulated component with the outside world. Usu-
ally, such techniques leverage network virtualization to provide each virtu-
alized environment a set of gateways that can be used to exchange data,
as if each VM/container was connected to a virtualized network infrastruc-
ture.

The scope of this section is to illustrate the various techniques that
can be adopted to connect OS containers in a virtual network. Since NFV
applications have very demanding requirements in terms of performance,
the focus of this section is to compare the various techniques with respect
to achievable performance on a general-purpose computing machine. Refer
to Fig. 3.1 for a visual comparison among the various techniques described
in this section.

3.2.1 Containers Networking Through the Linux
Kernel

Using the standard techniques provided by the Linux kernel, applications
deployed in containers can be connected in a virtual network within the
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Figure 3.1: Different approaches to inter-container networking: (a) kernel-
based solution; (b) using DPDK with vhost-user to bypass the kernel; (c)
using SR-IOV support.
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same host by creating virtual Ethernet ports and connecting them to-
gether, either in pairs (when only two containers need to communicate
with each other) or to a virtual switch included within the kernel, called
“ linux-bridge”. Each virtual port has no corresponding hardware inter-
face, they are purely implemented in software as endpoints for networked
communications within the same host, and they are each deployed in a
separate namespace (usually one per container) to allow applications in
different namespaces to exchange data. Traffic can also be exchanged with
the host namespace, in particular when it is necessary to send or receive
data from an actual network interface present on the host machine; linux-
bridge can connect these virtual ports to the actual interface and forward
traffic among all the ports according to the forwarding rules provided by
the administrator.

Traditionally, virtual Ethernet ports are managed by the Linux kernel
(shared among components), which means that their endpoints inside con-
tainers are simply accessed via blocking or nonblocking system calls through
the POSIX Socket API. The typical usage of such APIs is to either send
or receive one packet per system call, such as when using plain send() or
recv() functions (or their more general forms sendmsg() and recvmsg() ).
As a result, at least two system calls are required when exchanging a sim-
ple UDP datagram, along with the various user-to-kernel-space switches,
data copies and scheduling decisions. Therefore, the overheads associated
to these system calls grow to prohibitive values when small packets are
exchanged over the network. These costs can be amortized by increasing
the size of each packet, but they are still present nonetheless; performance
is still limited by the necessity to copy data from the sender to the receiver
address spaces during each call.

To better amortize the cost of each system call, batch APIs have been
introduced, allowing applications to send or receive multiple packets with
a single system call: for this purpose the sendmmsg() and recvmmsg() APIs
can be used. Even using these APIs, the problem of data copies is still
present; the only way to avoid this cost is to connect an application directly
with the underlying Network Interface Controller (NIC) hardware by ex-
ploiting memory-mapped I/O, scatter-gather primitives or using zero-copy
APIs, such as the MSG_ZEROCOPY flag.

The latter solution is often adopted in combination with raw sockets,
which allow applications to bypass most of the network stack implementa-
tion within the Linux kernel and construct/process themselves the actual
Ethernet frames that will be sent or received through the NIC device. This
allows to skip higher levels of the operating system stack, which do not
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have full hardware control and thus add up cycles on each packet pro-
cessing. That is why many packet capture solutions reduce the amount
of processing required from the OS kernel using raw sockets and adopt
memory-mapping techniques to reduce packet transmission costs from ker-
nel to user space through system calls [49].

This approach is actually effective, as it introduces a significant speedup
when a network device can be accessed directly by an application, and even
in the case of virtual Ethernet devices it can lead up to 2x performance
improvements with respect to entirely kernel-based UDP sockets; many
works demonstrated that in modern operating systems moving a packet
between the wire and the application can take 10-20 times longer than the
time needed to send a packet over a 10Gigabit interface [50]. However, this
approach introduces also a number of limitations. First of all, an applica-
tion requires to access in an exclusive fashion the network interface (either
physical or virtual) by preventing any other application to use that same
interface at all; this problem is not very relevant for containerized applica-
tions, since each virtual port associated to a container can be accessed only
by one processing application, which is the only one deployed within that
container. Second, this approach shifts the burden to write all network
stack layers, from data-link up to application layer on the application de-
veloper; for this purpose, some efficient user space implementations of the
network stack have been developed. Another problem of this solution is
that the Linux kernel is only partially avoided, since the NIC device (either
physical or virtual) needs to be accessed through system calls to actually
exchange data. Lastly, the MSG_ZEROCOPY option is most effective only when
the NIC device in use is an actual physical device which supports buffering
in the network driver, hence its usage with virtual Ethernet ports (like the
ones usually adopted when deploying applications within containers) does
not influence very much networking performance.

3.2.2 Inter-Container Communications with Kernel
Bypass

The main problem when using the Linux kernel to achieve network com-
munications is the kernel itself: even if most of the networking stack can
be bypassed or device buffers can be accessed directly from within applica-
tions through memory-mapped I/O, various parts of the kernel are still in
use throughout communications (unavoidable parts of the network stack,
kernel-based device drivers for NICs, etc.). In addition, the same Ethernet
device abstraction is used both for local and remote communication, which
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means that other forms of optimizations that could be applied by appli-
cations in certain scenarios (like actual zero-copy data transfers between
virtual devices) cannot be adopted at all, since all they see are kernel-based
networking devices. To achieve significant performance improvements for
inter-container network communication, system calls, context switches, and
data copies should be avoided as much as possible. For examples, if two
containers are co-located on the same physical node, they could exchange
data by using shared memory buffers. If not, applications within contain-
ers could access Ethernet devices directly and drive them using user space
device drivers implementations. Of course, this requires the introduction
of new mechanisms that bypass the in-kernel networking stack and drivers.

Different I/O frameworks allow kernel bypassing to exchange batches of
raw packets between applications without a single system call.

Local Communications and vhost-user

A first optimization that can be adopted when containers are co-located
on the same host (a situation which is fairly common given the stringent
requirements of networking performance between adjacent VNFs in the for-
warding graph) is to switch to para-virtualized network interfaces based on
the virtio standard [51, 52]. These interfaces expose “virtual queues” for
incoming/outgoing packets that can be shared among different guests on
the same host, allowing the implementation of efficient host/guest commu-
nications. The para-virtualization of these interfaces is much more efficient
than the full device virtualization provided by virtual Ethernet ports, as it
operates at a much higher level than the latter and both the host and the
guest can cooperate to achieve more efficient communications. Still, virtio
interfaces can be used with traditional socket APIs when handled by the
Linux kernel.

While virtio network devices are typically implemented for hypervisors
(e.g. QEMU, KVM), the recent introduction of a complete user space im-
plementation of such interfaces called “vhost-user” allows complete kernel
bypassing and it can be used within containerized environments to improve
significantly local communications network performance. When using the
kernel-based version, the vhost services [53] are implemented through ker-
nel threads created by the vhost-net kernel module, while the user space
implementation uses a simple daemon [54] to provide the same services.

While virtio is useful when communications between co-located contain-
ers are required, it does not provide any functionality when remote hosts
need to be reached, which means that alone it cannot be used to achieve
dynamic and flexible communications between independently deployed con-
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tainers. Thankfully, other frameworks are also available to take advantage
of kernel bypass techniques for both local and remote communications.

Netmap

Netmap [55] is a framework which allows commodity hardware (without
modifying applications or adding custom hardware) to process the millions
of packets per second which can be transmitted/received on 1 or 10Gigabit
links. Netmap’s high performance is achieved by removing three main
packet processing costs, namely per-packet dynamic memory allocation
(removed by pre-allocating resources), system call overheads (amortized
over large batches), and memory copies (by sharing metadata and buffers
between kernel and user space), while access protection for device registers
and other kernel memory areas still remains. The main goal of Netmap is
to build a fast path between NICs and the applications [56].

According to previous works [55], using Netmap a speed of 14.88Mbps
can be reached with a single core 900MHz processor, which represents also
the maximum packet rate for a 10Gbps link and the same core can reach
well above the capacity of 1Gigabit links just by running at 150MHz. In
fact, for the minimum Ethernet frame size of 64 bytes there are also 7 bytes
of preamble, 1 byte which represents the start of the frame delimiter and
12 bytes of the inter packet gap, which in total adds up to 160 bits to each
frame. This means that on a 10Gbps link at most the rate of 14.88Mpps
can be achieved, well below Netmap capabilities.

To use Netmap, a network interface must be switched from the regular
mode, in which the packets are exchanged between the NIC and the host
networking stack, to Netmap mode, in which NIC ring buffers are directly
connected to Netmap-defined buffer rings, implemented in shared memory.

Netmap provides a few interesting features to achieve high performance
for both local and remote communications, including support for multiple
hardware queues, zero-copy data transfer between supported interfaces,
zero-copy between applications and interfaces (via direct and protected
access to packet buffers), and memory pre-allocation for packet buffers to
avoid the cost of per-packet allocations/deallocations.

Data Plane Development Kit (DPDK)

Data Plane Development Kit (DPDK) [8] is a set of data plane libraries
and drivers which are used for fast packet processing. Initially developed
by Intel for its x86 CPUs, it is now extended to support other architectures,
like IBM Power and ARM. DPDK main goal is to provide a framework for
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fast packet processing in data plane applications that is simple and com-
plete, providing an abstraction level that allows applications to be easily
distributed on a multitude of different platform with relative ease, resulting
in more scalable and simplified infrastructure solutions [57].

The high-level programming abstraction provided by DPDK is called
Environment Abstraction Layer (EAL) [58] and it provides a generic in-
terface that applications can use to gain accesses to low-level resources as
memory space and hardware devices in a simple and generic way, without
any intervention from the kernel. Each application can spawn one or more
threads based on the pthreads library that continuously run on one core
each to produce or consume data from network interfaces. Performance is
improved adopting a series of techniques, all implemented in user space,
that allow to reduce delays between the network device (physical or vir-
tual) and the application itself [57]; the most common techniques include
using cache alignment on most memory structures, setting core affinity for
threads, disabling interrupts (accessing device buffers in polling), transfer-
ring data from and to devices in batches, avoiding overheads related to
context-switches (using non-blocking APIs to avoid the intervention of the
scheduler), and implementing memory buffers in huge pages residing in
memory, thus avoiding delays introduced by memory addresses translation
and swapping.

Some key components provided by DPDK include:

Memory Pool Manager used to allocate Non-Uniform Memory Access
(NUMA)-aware pools of objects in huge-page memory space.

Buffer Manager greatly reduces the amount of time needed for allocating
and de-allocating packet buffers.

Queue Manager implements safe lockless queues that do not rely on
spinlocks, to avoid waiting for other threads when managing queues.

Poll Mode Driver (PMD) the main driver used to access 1Gigabit
and 10Gigabit Ethernet controllers (either physical or virtual), which
improves the efficiency of packet transfers by avoiding asynchronous
interrupt-based signaling mechanisms.

In addition, DPDK supports virtio-based network devices (thanks to
its implementation of vhost-user interfaces); this means that applications
within containers can communicate with others by using DPDK libraries,
either using virtio-based virtual devices or by accessing actual Ethernet
devices present on the host, without any changes to their implementa-
tion. During the initialization phase, the Environment Abstraction Layer
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(EAL) will simply parse a set of parameters and setup all the required
ports accordingly; later, each port can be used in the same way, regardless
the underlying interface used. This simplifies considerably the developers
work, which can simply build their applications on top of the standardized
interface and then deploy them on any platform, connecting each compo-
nent to any kind of DPDK-supported interface. For this reason, DPDK
has become extremely popular over the past few years when it is necessary
to implement fast data plane packet processing.

3.2.3 High-Performance Switching Among Containers

The realization of a virtual network infrastructure on a single host can be
achieved in multiple ways, either by placing a direct communication link
between each pair of VNFs that need to communicate (e.g. placing each end
of a virtio pair within each VNF namespace) or by interconnecting a group
of components to a virtual switch component, usually running in the host
namespace. Between the two approaches, the first one is more efficient from
a performance point of view, as no additional packet processing is needed
to forward traffic from one component to another. However, it is also
subject to exponential growth with the number of VNF components, since
a private communication link is assigned to each pair of VNF components
connected within the forwarding graph. This is a viable approach when the
communication is only local to a single machine (i.e. multiple containers
on the same host), but it cannot be used in the more general case where
VNFs can be deployed anywhere on the cloud infrastructure.

For these reasons, over the past few years a number of software imple-
mentations of L2/L3 switches have been developed. These components act
like any actual switch, only their implementation is purely software and
they can connect together both physical and virtual interfaces. The men-
tioned linux-bridge is one example of such component implemented directly
within the Linux kernel. Since these switches are placed in between network
endpoints, they must be able to process packets on the data plane very ef-
ficiently to satisfy performance requirements both in terms of throughput
and latency between components, to leave as much flexibility as possible
to MANO when deploying VNFs.

Implementing a virtual switch inside the kernel using linux-bridge, as
depicted in Fig. 3.1a, can lead to a series of problems that may impact
the overall performance of the NFV infrastructure. As already mentioned
before, adopting techniques that avoid the kernel at all is the only effec-
tive solution to reach traffic volumes of millions of packets per second and
above. That’s why many virtual switches are implemented as user space
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applications that use DPDK to accelerate packet processing, both bypass-
ing the kernel when accessing physical NICs and using virtio endpoints
to communicate with each container. While this is not the only solution
possible to implement a virtual switch, it is widely diffused, with many
virtual switches adopting vhost-user to communicate with local containers
and using user space drivers to connect to physical network interfaces.

The following is a list of the most commonly adopted solutions in the in-
dustry for inter-container communications using virtual switches. For each
of these scenarios (with the exception of SR-IOV), each container is con-
nected to a software-based virtual switch via a vhost-user based connection,
as shown in Fig. 3.1b.

DPDK Basic Forwarding Sample Application

DPDK provides a set of example applications alongside its installation on a
machine. One of such applications is Testpmd [59], which is a software that
can be used to test the functionality of DPDK PMD driver by connecting
ports in pairs. On top of that, Testpmd provides other sets of functionalities
(e.g. statistics collection, port management operations, etc.), which can be
used to get familiar with the various functionalities provided by DPDK.
This application acts as a simple bridge between pairs of virtual or physical
ports; albeit configurable, the default pairing between ports is performed
on their ordering (ports 0 and 1, ports 2 and 3, and so on), which means
that this software does not contain any actual switching functionality nor
packet inspection programmed in it.

Due to this limitation this software cannot be used in a production
environment, as it is not possible for a VNF to be connected to more
than one other VNF without opening multiple ports, but it is also very
efficient with respect to throughput and latency performance, as no packet
processing operation is necessary to forward traffic, the only information
needed is the port from which the packet was received.

In this sense, Testpmd is equivalent to another sample application
provided by DPDK, which is called the Basic Forwarding Sample Appli-
cation [60]. As this is less configurable than Testpmd, it is even more
lightweight and thus it can be used in its place when a simple bridge be-
tween pair of ports is needed.

Open vSwitch (OVS)

Open vSwitch (OVS) [61] is a multi-layer, open-source virtual switch devel-
oped to be compatible with all major hypervisor and container systems [62].
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In contrast with early virtual switches used for this purpose, OVS does not
use static forwarding pipelines to provide L2 connectivity among VMs (or
containers) and the physical network. It is instead designed for flexibil-
ity and general-purpose usage and it is even programmable remotely via
OpenFlow.

OpenFlow [63] is a simple binary protocol that can be used to monitor
remotely a supported switch, either software or hardware, by collecting
statistics on flow tables. In addition, it allows software controllers to change
the behavior of the monitored switch by adding, removing or updating flow
tables remotely.

The flexibility of OpenFlow allows OVS to be used in combination with
SDN controllers and makes it extremely suitable for NFV MANO, but it
also means that OVS needs to adopt a few precautions to be as efficient as
less flexible solutions [62]; one example of these precautions is flow caching,
which is an important feature within OVS implementation.

Recently, OVS has been updated to support DPDK (and hence also
virtio-based ports), which accelerated considerably packet forwarding op-
erations by performing them in user space rather than within a kernel
module [64].

FD.io Vector Packet Processing (VPP)

FD.io Vector Packet Processing (VPP) [65] is an extensible framework
which provides out-of-the-box production quality switching and routing
functionality released by the Linux Foundation Fast Data Project (FD.io).
Since it is developed on top of DPDK, it can run on various architectures
and it can be deployed in VMs, containers or bare metal environments.

It is a general purpose framework which can be configured on deploy-
ment, simplifying the deployment of a set of already available VNFs imple-
mented as software components (thus not encapsulated within containers).
VPP runs as a Linux user space application and it is conceived as a “packet
processing graph”, to which customized graph nodes can be easily plugged
into complex and dynamic service chains.

While VPP is not the only framework of this kind (e.g. Click [66],
FastClick [67], etc.), an advantage of VPP over similar counterparts is that
it implements an open-source version of Cisco VPP technology as its core
processing paradigm, from which the framework gets its name. The core
idea behind VPP is to process more than one packet at a time, taking
advantage of both instruction and data cache localities to achieve lower
latency and higher throughput [68]. VPP is very efficient when the number
of packets per vector increases, as the processing cost per packet of I-cache
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misses is amortized over the large number of packets processed by each
function in a single vector.

Snabb

Snabb [69] is a simple and fast packet networking toolkit that can be used
to program user space packet processing flows [54]. This is done by con-
necting functional blocks in a directed acyclic graph, each block performing
a specific action or representing a custom driver for an interface. Differ-
ently from previous solutions, Snabb is not based on DPDK but instead it
has its own implementation of both virtio and NIC drivers in user space
(although it lacks support for some Ethernet devices).

A certain Snabb configuration can be deployed by writing an appropri-
ate program written using Lua language, whose only purpose is to setup
and connect together the components that will form the packet processing
graph. This is another key difference with respect to other solutions: while
others accept a simple configuration file and do not require users to write
any program, a simple Snabb application can be started only if the appro-
priate configuration program is supplied. On the other hand, the fine grain
control over the resulting graph allows for greater optimization, including
in the graph the required blocks only.

Single-Root I/O Virtualization (SR-IOV)

Single-Root I/O Virtualization (SR-IOV) [9] is a specification that allows
a single PCIe device to appear as multiple physical PCIe devices. This is
achieved by introducing the distinction between Physical Functions (PFs)
and Virtual Functions (VFs): the former are capable of using the full list
of features of the PCIe device, while the latter are “lightweight” functions
that have only the ability to move data between an application and the
device.

VFs can be individually exposed in passthrough to VMs or containers,
which can access directly the hardware device without any need for virtual
switching. Most SR-IOV devices contain a hardware L2 switch to forward
traffic among PFs and VFs. This is depicted in Fig. 3.1c.

SR-IOV devices can either be accessed trough OS drivers or via DPDK
APIs, which allow applications to gain complete control over a VF directly
in user space. In this case, an instance of DPDK Testpmd application
must run on the host to handle configuration requests from applications,
to assign or release VFs, and to configure the control plane associated with
the hardware switch, which will then perform all forwarding operations in
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hardware.

3.3 Performance Comparison Among Virtual
Switches

In this section we include and slightly expand the comparison published
in our previous work [1] among various techniques that make use of kernel
bypass for high-performance inter-container communications.

The proliferation of different technologies to exchange packets among
containers has created the need for new tools to evaluate the performance
of these virtual switching solutions with respect to throughput, latency
and scalability. Several works appeared in prior research literature address
the problem of network performance optimization for virtual machines and
containers. For example, some authors [70] investigated packet forwarding
performance achievable in virtual machines using different technologies to
implement the virtual NICs and to connect them to the host network stack
or physical NIC.

Many solutions exist to greatly reduce the overheads due to interrupt
handlers, like interrupt coalescing and other optimizations available on
Linux through Linux New API (NAPI) [71], including hybrid interrupt-
handling techniques that switch dynamically between interrupt disabling-
enabling and polling depending on the actual traffic on the line [72].

Comparisons among traditional sockets, DPDK, and Remote Direct
Memory Access (RDMA) [73] already exist, mainly focusing on the achiev-
able minimum round-trip latency between two different machines [74].
These works show how both RDMA and DPDK can outperform kernel-
based UDP sockets, achieving much smaller latency for small UDP pack-
ets; their drawback is that they force applications to operate in poll mode,
leading unavoidably to high CPU utilization. Also, authors point out that
DPDK can actually be used in combination with interrupts, saving energy,
but before sending or receiving packets the program must switch back to
polling mode. This reduces CPU utilization during idle times, at the cost
of a greater latency when interrupts must be disabled to revert to polling
mode, when the first packet of a burst is received.

A survey among common networking setups for high-performance NFV
exists [75], accompanied by a quantitative comparison addressing through-
put and CPU utilization of SR-IOV, Snabb, OVS with DPDK and Netmap.
In this work, the authors highlight how each different solution has remark-
able differences in security and usability with respect to each other, and
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they show that for local VM to VM communications Netmap is capable
of reaching up to 27Mpps (when running on a 4GHz CPU), overcoming
SR-IOV due to its limited internal switch bandwidth that becomes a bot-
tleneck.

Another work [76] compared the various trade-offs between throughput
and latency when adopting three different frameworks for fast packet I/O:
DPDK, Netmap and PF_RING [77]. In this work, authors illustrated that
the main hardware characteristics that can potentially limit packet process-
ing performance for inter-machine communications are the CPU (which is
considered often the dominating bottleneck, as most of these solutions re-
quire applications to fully utilize CPU cores), NIC maximum transfer rate
(determined by the Ethernet standard), the PCIe bus connecting the NIC
to the rest of the system, and RAM memory. In particular, the first two
characteristics are considered the most limiting features of the system, thus
as long as the processing cost per packet is kept low the main limitation
for inter-machine communication remains the one introduced by the Ether-
net standard onto the NIC device. However, as per-packet processing cost
increases the main limitation in terms of throughput is often represented
by the CPU (which becomes fully loaded). From their evaluations, DPDK
is considered to be the most lightweight solution, both with respect to
PF_RING and Netmap, and it is also able to achieve the highest through-
put in terms of packets per second for small burst sizes (about 32 packets
per burst); on the contrary, Netmap reaches its highest throughput for big-
ger burst sizes (about 128 packets per burst), but with lower throughput
compared to both DPDK and PF_RING.

In another interesting work [78], VPP, OVS and SR-IOV are compared
with respect to scalability in the number of VMs on a single host. The
results of such evaluation show that SR-IOV offers a highly linear con-
tribution to the total system throughput as VNFs are added to a certain
machine, while both VPP and OVS are able to scale throughput linearly
with the number of VNFs up to a certain plateau, which is directly influ-
enced by the amount of CPU resources allocated to VPP and OVS virtual
switching functions. The more VNFs are added, the more system perfor-
mance are degraded if no more resources are allocated for the active virtual
switch.

While in this work we will provide a thorough performance analysis for
many of the networking solutions described in other works, some of them
have not been included; in particular, we did not evaluate NetVM [79] and
Netmap (along with its associated virtual switch, VALE [80]), because our
focus is to evaluate solutions commonly adopted in current NFV industrial
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practice.
Other works exist in the area, but a complete state of the art review is

out of the scope of this thesis. While many of these works provide quite
systematic reviews of some of the technologies that can be used for NFV, a
standardized way to carry out such experiments does not exist, as there is
no high-performance tool generic enough to be highly portable on virtually
any kind of platform that can be used for NFV. For this reason, each
different work relies on custom configurations of one or more machines.

For this reason, the main purpose of this thesis is to develop such a
tool, to speed up the evaluation process of existing and potentially future
technologies for NFV, with a particular focus of industrially viable solutions
for high-performance networking for Linux containers in a NFV scenario.

This thesis is also the conclusion of our preliminary work [1], where a
basic comparison of throughput performance among communication tech-
niques for co-located Linux containers was performed, again in the context
of NFV.
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Framework Description and
Implementation

The main purpose of this work is the design and implementation of a soft-
ware framework that can be used to evaluate the various technologies that
can be adopted to achieve high-performance networking among Linux con-
tainers in NFV scenarios. In this chapter we thoroughly describe the re-
quirements and characteristics of this framework.

The designed framework shall be used to setup and perform a series of
tests to evaluate performance of networking solutions for NFV on one or
more general-purpose servers. The framework shall be easy to configure and
deploy on any kind of host, with little to no customization effort on behalf of
the user and it shall take care of installing its own dependencies. However,
the generality and portability of the framework must not impact negatively
its performance, as that is its main purpose. For that, the portability of
the DPDK framework will be an important factor, as this work will rely on
the libraries included with DPDK to implement its testing applications.

Once deployed on one or multiple hosts, the framework can be used to
instantiate OS containers and start a few applications (one per container)
that will exchange data via network primitives. These applications will
be also provided by the framework and they will serve a dual purpose, to
both generate synthetic workload to simulate real NFV applications and
to collect statistics that will be used to evaluate system performance in
a particular configuration. Each test will execute for a specific amount
of time, after which the framework will provide to the user the desired
statistics and return. To ease the evaluation of a system when varying
certain parameters, the framework shall also be designed to accept multiple
tests configurations at once: in that situation, it will simply execute them
one after the other autonomously and it will signal the user once all tests
are done.

The applications that will run inside each OS container are provided by
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the framework to evaluate network performance under the following points
of view:

Throughput Dimension As many VNFs deal with huge amounts of pack-
ets per second, it is important to evaluate the limits of each net-
working solution with respect to the number of packets it is able to
effectively process and deliver each second.

Latency Dimension Many VNFs shall operate with networking proto-
cols that have been designed for hardware implementations, and as
such they expect very low round-trip latency between components,
in the order of single-digit microsecond latency. In addition, in NFV
infrastructures it is quite common to have relatively long chains of
services that communicate with each other; in these situations, what
matters the most is the end-to-end latency, thus it is crucial to keep
the latency of individual interactions as little as possible.

Scalability Evaluations from this point of view are orthogonal with re-
spect of the two previous dimensions, in particular with respect to
throughput: to fully utilize available resources it is necessary to de-
ploy multiple VNFs on each host within the infrastructure, and as
such it is extremely important to evaluate how this affects perfor-
mance in the mentioned dimensions.

This section will show the whole framework that has been designed,
first by describing what are the framework dependencies and installation
process, and then moving on for a bottom-up description of all framework
components.

4.1 Framework Installation

An automated installation script is provided to ease the gathering and
installation of all framework dependencies and the configuration of the host
for testing. The list of framework dependencies installed and configured by
the installation script is the following:

LXC The backend used to instantiate and deploy containers on the host.
The Linux distribution that will be deployed will be based on a simple
rootfs built from a basic BusyBox and containing only the resources
necessary to start the testing applications provided by the framework.
The installation script will both install LXC and configure a set of
containers based on an configuration file provided by the user (a set
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of sample configuration files is provided with the framework itself).
All containers created by the installation script will share the same
rootfs, resulting in a very low disk occupation. The parameters that
can be provided for each container include the name of the container,
list of CPU cores to use, IP and MAC address, and the virtio socket
or SR-IOV VF to use when started.

DPDK The framework will download DPDK sources from the official
repository and build it from sources. The installation process will
also build some example applications provided with DPDK, including
Testpmd application and the Basic Forwarding Sample Application.

OVS The installation script will download OVS sources from the official
repository and build it on the local host. This is necessary to compile
OVS with DPDK support.

VPP This software switch will be installed from the official APT reposi-
tory, which also includes DPDK support out-of-the-box. The frame-
work includes a base configuration file that can be used to start with
the desired parameters; that file can be easily modified to change
such parameters with relative ease.

Snabb This software is downloaded from the official GitHub repository
and compiled from sources. Since this software switch is implemented
as a BusyBox including multiple applications and the only way to
actually deploy the switch itself is to write a small program in Lua
language to setup and connect the required components, a small Lua
script is provided by the framework. The script will setup a simple
learning switch component with a certain number of ports to which
applications can connect to communicate.

Since DPDK relies on resident huge pages memory to allocate data
structures and buffers used for packet processing, the system is configured
to allocate a configurable amount of huge pages during boot through ad-
ditional kernel options. In particular, it is configured to allocate a certain
amount N resident pages of 1GB with the following options:

hugepagesz=1G hugepages=$N intel_iommu=on iommu=pt

It then creates a huge page Translation Lookaside Buffer (TLB) File Sys-
tem that can be used by applications to index and allocate huge pages on
demand1.

1For more info see https://lwn.net/Articles/375098/
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In addition, the installation script builds and installs the applications
that will be used for performance testing inside the containers rootfs.

4.2 Testing Applications Included in the
Framework

The applications used to generate synthetic traffic among containers are
provided as a single executable file built from sources that act like a Busy-
Box, accepting as first argument the name of the application to run. Each
application accepts the same list of parameters, although some specific ap-
plications may ignore some of the parameters. In general, each application
generates or consumes a certain amount of packets each second. The ap-
plications are all configurable to handle packets in bursts and they all fully
utilize the CPUs on which they are pinned, as they access network devices
(virtual or physical) in polling mode.

Each application expects to be connected with another application over
the local network, each pair independent from the others. The first four
parameters expected by each application are in order the local IP and MAC
address to use and the IP and MAC addresses of the other application
in the pair. Then a list of optional parameters may follow, as shown in
Table 4.1. In addition to these parameters, applications that make use
of DPDK will also accept other parameters after a double dash ( -- ), for
example the name of a virtio interface to use or the PCIe address of a
SR-IOV VF. These parameters are used to configure DPDK EAL [58] and
thus are simply ignored by those applications that use only syscall-based
API. For further information about EAL parameters refer to the official
documentation [58].

There are two kinds of application pairs that can be used to test the
networking performance of one or multiple hosts:

Sender/Receiver This pair of applications respectively generate/consume
traffic with the purpose of evaluating the throughput performance of
the networking among containers. In this scenario, the direction of
traffic is only unidirectional, from the sender to the receiver.

Client/Server This pair of applications generate traffic with the purpose
of evaluating round-trip latency of packets. In this case, traffic is
bidirectional, as each packet sent to the server by a client is sent back
from the server to the corresponding client.
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Table 4.1: List of parameters accepted by each testing application. Some
parameters may be ignored, refer to each application description for details.

Parameter Has
Argument

Description

-r YES The sending rate in packets per second
-p YES The size of each packet in bytes
-b YES The number of packets in each burst

-R YES
If using syscall-based API, use raw sockets
instead of normal sockets; the parameter is the
name of the interface to use

-B NO If using syscall-based API, use blocking sockets
instead of non-blocking API; ignored otherwise

-c NO

If provided, the application will generate the
content of the packet and it will touch each
byte; if not, only packet headers are actually
manipulated

-m NO If using syscall-based API, enable the use
sendmmsg()/recvmmsg() API; ignored otherwise

-s NO Do not print any statistics until a signal is
received
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Multiple application pairs can be deployed at the same time to evaluate
the scalability of the performance as the number of applications increases
(and consequently, the amount of total traffic generated).

The following sections describe each of the applications included in the
BusyBox and their main usage. Each application kind (i.e. sender, receiver,
client or server) is present in two forms, one that uses socket syscalls and one
that makes use of DPDK API. The two implementations are strictly related
as they can be used to compare the performance of the same programming
logic when applied respectively with traditional Linux networking API or
with DPDK.

It is important to notice that there is no need to learn how to start these
applications manually, as more high-level tools capable of automatically
start and stop these applications with the correct parameters in the desired
containers are also provided by the framework.

4.2.1 Syscall-Based Sender Application

This application uses sockets (either simple UDP sockets or raw sockets)
to send packets to a corresponding receiver application and it is started
by giving send as very first parameter to the BusyBox. By default it
uses send() to send all the packets in each burst one at a time; if the
-m parameter is provided it uses sendmmsg() instead to a whole burst of
packets in one single syscall. In both cases, the use of -R parameter forces
the application to use raw sockets, building Ethernet, IP and UDP packet
headers in user space.

Since packets are sent in bursts, this application will attempt to equally
divide the desired sending rate ( -r ) by the burst size ( -b ) to obtain the
number of times it must wake up to generate new traffic. It must be noted
that to achieve the highest performance possible, all applications included
in the BusyBox do not use sleep or interrupt-based timers to be woken up
at certain intervals, but instead continuously poll the content of the Time
Stamp Counter (TSC) register of the CPU until the next expected value is
reached.

This application is used to generate packets for throughput evaluation;
as such, each second a log is printed containing the number of total packets
that the application attempted to send, the number of actually sent packets
and (by difference) the number of packets dropped by the interface. Using
the -s option postpones the print of all the statistics at the end of the
execution.
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4.2.2 Syscall-Based Receiver Application

This application is the dual of the sender application and it is started by
using recv as very first parameter of the BusyBox. As such, its description
is the same as the sender, except the usage of recv() / recvmmsg() syscalls.
However, this application ignores the -r parameter, and thus it continu-
ously polls the socket input stream to check for incoming packets, either
one by one or in bursts, depending on the other parameters.

The only statistic logged by this application over time is the actual
receiving rate in number of packets per second for throughput evaluations.
Like with any other application, these statistics can be postponed to be
printed at the end of the execution.

4.2.3 DPDK-Based Sender Application

This application has the same purpose of its syscall-based counterpart, with
the difference that all syscall-related parameters are ignored and it expects
EAL parameters to configure the port over which network traffic should be
generated. This port can be either a virtio/vhost-user port or a SR-IOV
VF (specified via its PCIe address). It can be launched by using dpdk-send
as first parameter.

Each time a new burst must be generated, this application requests a
set of buffers allocated from huge pages memory space and proceeds to fill
them with packets up to the size of the burst. It then sends them all with
a single call, which takes the control of the given buffers and returns how
many messages have actually been sent. The dropped messages must then
be freed from memory before working on the next burst.

The statistics generated by this application are exactly the same format
as the syscall-based one.

4.2.4 DPDK-Based Receiver Application

This application is the dual of the DPDK-based sender application and
it can be started by using dpdk-recv a first parameter. This application
ignores the value of -r parameter too, as well as all syscall-related pa-
rameters, to continuously poll the given port for new incoming packets in
bursts. Each packet received is checked to ensure that it was indeed meant
for this instance of the receiver application, checking destination MAC ad-
dress, IP address and UDP port. This is necessary as DPDK ports are
configured in promiscuous mode, and thus some traffic not actually meant
for this application shall be ignored.
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The statistics generated by this application are exactly the same format
as the syscall-based one.

4.2.5 Syscall-Based Client Application

This application uses sockets (either simple UDP sockets or raw sockets)
to send packets to a corresponding server application, expecting to receive
those messages back. It is started by using client as first parameter. In
contrast with the other applications included in the BusyBox, this one uses
multiple threads, one for sending bursts of packets and one to receive back
those messages. In addition, to calculate the delay of each packet in the
most accurate way across different CPU cores, a third thread is used to
continuously update the last known value of the TSC. This way, both the
sender and the receiver threads can share a common time base.

The basic structure of the sender and receiver threads is much sim-
ilar to the body of the sender and receiver applications, with minimum
changes. In particular, the payload of each packet will contain a times-
tamp (expressed as value of the TSC register), so that the receiver thread
can correctly calculate the round-trip delay time for that packet. Other
than that, this application shares the same characteristics of the others
syscall-based applications.

This application is used to generate traffic for round-trip latency eval-
uation and it logs two values over time: the number of packets received
back each second and the average delay among of those packets. Notice
that only packets received back contribute to the calculation of the average
delay for each second. Using the -s option postpones the print of all the
statistics at the end of the execution.

4.2.6 Syscall-Based Server Application

This application uses sockets (either simple UDP sockets or raw sockets)
to send back packets received from a corresponding client application. It
is started by using server as first parameter. This application uses a sin-
gle thread, continuously checking for new incoming messages and sending
back anything that is received as soon as possible. Data is not modified,
except when using raw sockets: in that case, source and destination MAC
addresses, IP addresses and UDP ports are swapped to match the inverted
roles between sender and receiver application. For this application, the -r
parameter is ignored, the opened socket is continuously checked for new
incoming messages as soon as previous messages have been processed.

49



CHAPTER 4. FRAMEWORK DESCRIPTION AND
IMPLEMENTATION

This application is used to send back traffic generated by clients for
round-trip latency evaluation, but since all the statistics necessary for per-
formance evaluation are produced by the client application it does not log
anything.

4.2.7 DPDK-Based Client Application

This application has the same purpose of its syscall-based counterpart,
with the difference that all syscall-related parameters are ignored and it
expects EAL parameters to configure the port over which network traffic
should be generated and then received back. This port can be either a
virtio/vhost-user port or a SR-IOV VF (specified via its PCIe address). It
can be launched by using dpdk-client as first parameter.

The basic structure of the threads of this application is very similar
to the body pf the DPDK-based sender and receiver applications, with
minimum changes. Like its syscall-based counterpart, a timestamp is added
as first datum in each packet payload and it is later checked against the
value of the TSC register upon reception.

The statistics generated by this application are exactly the same format
as the syscall-based one.

4.2.8 DPDK-Based Server Application

This application is the dual of the DPDK-based client application and it
can be started by using dpdk-server a first parameter. This application
ignores the value of -r parameter too, as well as all syscall-related pa-
rameters, to continuously poll the given port for new incoming packets in
bursts. Each packet received is checked to ensure that it was indeed meant
for this instance of the receiver application, checking destination MAC ad-
dress, IP address and UDP port. This is necessary as DPDK ports are
configured in promiscuous mode, and thus some traffic not actually meant
for this application shall be ignored. Then addresses and port numbers
are swapped before sending back the received message. Messages are sent
back in bursts with a number of packet per burst less or equal the number
of received packets (depending whether some packets are dropped during
header processing).

Like its syscall-based counterpart, this application does not log any
statistics.
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4.3 System Setup and Architecture

The framework includes some tools to setup an entire NFV use-case sce-
nario by deploying a set of applications from the available list into a cor-
responding number of containers, taking care of all the setup necessary
to interconnect these applications with the desired network technology.
The latter may be any among linux-bridge, a software-based virtual switch
(making use of virtio and vhost-user) or an SR-IOV Ethernet adapter. A
basic representation of each of these scenarios is depicted in Fig. 3.1.

More in details, a set of Bash scripts has been developed to do a number
of operations that automatize the deployment and the setup of the system
for a specific evaluation:

• One to setup and start a single test on the local host. This script
accepts a configuration file as input to specify which applications to
deploy in containers on the local host and a set of parameters to be
forwarded to each application.

• One to setup and start a single test on a remote host; this one sim-
ply copies onto the other host the configuration files and parameters
needed, starts the script for local tests on that host and waits for test
termination.

• One to iterate through a series of tests and start them one by one on
the local host, on another host or on multiple hosts at the same time
(usually when testing network performance in multi-host scenarios).

This section describes more in details all the actions performed by each
script to bring each host into a suitable state for testing and perform the
actual tests.

4.3.1 Local Test Configuration Script

This section describes the parameters and the actions taken by the Local
Test Configuration Script to perform a single test execution on the local
host. The script can be started by executing the command ./run_local_test
from the scripts directory. Table 4.2 contains the list of parameters avail-
able for this script.

When the script is started, the system is first brought into a suitable
state for reproducible performance evaluations. To maximize reproducibil-
ity of test results, it disables CPU frequency scaling by setting the frequency
governor of each core to “performance” and by disabling Turbo Boost on
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Table 4.2: List of parameters accepted by the local test configuration script.

Parameter Has
Argument

Description

-r
--rate

YES The sending rate in packets per second

-p
--pkt-size

YES The size of each packet in bytes

-b
--bst-size

YES The number of packets in each burst

-R
--use-raw-sock

NO If using syscall-based API, use raw
sockets instead of normal sockets

-B
--use-block-sock

NO
If using syscall-based API, use blocking
sockets instead of non-blocking API;
ignored otherwise

-c
--consume-data

NO

If provided, the applications will
generate the content of the packet and it
will touch each byte; if not, only packet
headers are actually manipulated

-m
--use-multi

NO
If using syscall-based API, enable the
use sendmmsg()/recvmmsg() API; ignored
otherwise

-t
--timeout

YES The duration of the test in seconds;
default value is 60 s

-v
--vswitch

YES

The name of the virtual switch to use;
possible parameters are basicfwd,
linux-bridge, ovs, snabb, sriov, vpp. If
linux-bridge is used, each application
started will use kernel-based networking,
otherwise the DPDK-variants of each
application will be deployed

-f
--conf-filename

YES The path of the containers’ configuration
file (see Table 4.3 and Listing 4.1)

-D
--debug

NO

Force applications to log statistics
during execution. The default behavior
is to not log statistics to avoid
interference with test results
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the local host. It then proceeds to load a few kernel modules necessary to
manage SR-IOV VFs using DPDK tools.

The script then proceeds to start the designated virtual switch for the
current evaluation and to configure it for local communications. Each
switch is configured with a number of ports equal to the number of ap-
plications that shall be deployed on the local host (either virtual ports or
SR-IOV VFs) and then started. Each virtual switch is configured to act
as a simple learning L2 switch, with the only exception represented by
DPDK Basic Forwarding Sample Application, which does not have this
functionality.

In addition, for VPP and OVS, which both support Intel SR-IOV-
enabled Ethernet controllers, a physical Ethernet device is also connected
to the virtual switch. This way, traffic to or from outside the local host can
be exchanged via the physical NIC. Among the other virtual switches, using
the one embedded within the SR-IOV device enables multi-host commu-
nications out-of-the-box, without any further configuration needed, Snabb
supports only a few Ethernet devices, which does not include the ones
available to us during the development of the framework, since each dif-
ferent driver must be implemented from scratch in Lua language, and the
Basic Forwarding Sample Application. The latter does have support for
the Ethernet devices we used during development, but it would be of little
use: since only one port (virtual or physical) can be connected to another
one using this software, so only one container could be connected to the
outside using this configuration. Of course, if linux-bridge is used instead
of kernel bypassing solutions, no operation is needed.

At this point, the script starts a set of containers, each with a specific
application running inside. The list of all applications and containers to
start, as well as how such applications should be connected with each other
is provided through a configuration file, in the form of a “run commands”
configuration file. The list of all available parameters to configure the
containers to deploy for testing is available in Table 4.3, while an example
of a configuration file is shown in Listing 4.1, in which three containers are
started in each test: the first two communicate with each other, while the
third one is configured to communicate to another container deployed on
a separate host (more on that in the following section). On startup, each
application will be pinned to the specific cores assigned to the respective
container during installation and system configuration.

Once all containers are up and running, they will connect to the desig-
nated virtual switch automatically and thus the script waits for a certain
amount of time (depending on the --timeout parameter) before signaling
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them all to terminate execution. When all applications have terminated,
the system is cleaned up and restored to its original state.

4.3.2 Remote Test Configuration Script

This script sets up for execution a single test on a remote host, specified
via the --hostname parameter, and collects the statistics produced during
the evaluation on the local host. The script can be started by executing the
command ./run_remote_test from the scripts directory. Its parameters
are the same as the Local Test Configuration Script, with the addition of
the ones listed in Table 4.4.

This script is very simple, as it simply copies the specified configura-
tion file from the local host to the remote one and starts the Local Test
Configuration Script on the remote host. It then copies back all the test
results upon test termination.

4.3.3 Multiple Tests Configuration Script

This script is the most high-level tool that has been developed for the
framework and it is intended for a more general use than the two previous
scripts. Its role is to automate the execution of multiple tests with different
configuration parameters (e.g. sending rate, packet size, virtual switch in
use, etc.) either on a single or a multiple host environment. The script can
be started by executing the command ./run_testset from the scripts
directory.

While some parameters resemble the ones used for the other two scripts,
some of them have been adjusted to accept sets of values over which iterate
to perform each different testing scenario. The complete list of parameters
accepted by the script is shown in Table 4.5. This way, multiple tests can be
performed varying the following parameters: packet size, burst size, desired
sending rate, and virtual switch used. To achieve this goal, the parameter
-v now accepts a string containing a list of different virtual switches that
can be used in different tests (e.g. "ovs snabb sriov") , while the parameters
-p , -b , and -r can have two different kinds of parameters:

• The first kind of parameter is represented by a simple list of values to
iterate enclosed within double quotes and separated by spaces, e.g.
"32 64 128 512".

• The other kind is represented by a description of three parameters
that shall be used to generate a list of values to iterate, again enclosed
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Table 4.3: List of parameters that can be provided via the local test con-
figuration file.

Parameter
Name

Description

LXC_CONT_NAMES The names of each container to be deployed

LXC_CONT_VFS
The device names of each SR-IOV VF associated
to each container (if SR-IOV is used)

LXC_CONT_MACS
The MAC addresses of each local container to be
deployed

LXC_CONT_IPS The IP addresses of each container

LXC_CONT_NMASKS
The network masks associated with each
container

LXC_CONT_VFPCIS The PCIe addresses of each VF

LXC_CONT_SOCKS
The names of the virtio sockets to be used in case
vhost-user is adopted for network communications

LXC_CONT_OTHER_IPS
The IP addresses of the other container in the
application pair

LXC_CONT_OTHER_MACS
The MAC addresses of the other container in the
application pair

LXC_CONT_CMDNAMES

The names of the application to be started in the
container; accepted values are send, recv, client
and server. In this case there is no distinction
between syscall-based or DPDK-based
applications, the actual started application is
determined by the networking mechanism
specified with the script parameter -v (see
Table 4.2)
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LXC_CONT_NAMES=( \
dpdk_c0 dpdk_c1 dpdk_c2 \

)

LXC_CONT_VFS=( \
enp4s2 enp4s2f1 enp4s2f2 \

)

LXC_CONT_MACS=( \
02:00:00:00:00:10 02:00:00:00:00:11 \
02:00:00:00:00:12 \

)

LXC_CONT_IPS=( \
10.0.3.10 10.0.3.11 10.0.3.12 \

)

LXC_CONT_VFPCIS=( \
04:02.0 04:02.1 04:02.2 \

)

LXC_CONT_SOCKS=( \
sock0 sock1 sock2 \

)

LXC_CONT_OTHER_IPS=( \
10.0.3.11 10.0.3.10 10.0.3.20 \

)

LXC_CONT_OTHER_MACS=( \
02:00:00:00:00:11 02:00:00:00:00:10 \
02:00:00:00:00:20 \

)

# Can be either send, recv, client, server
LXC_CONT_CMDNAMES=( \

send recv send \
)

Listing 4.1: Example of a simple local test configuration file. Each con-
tainer is assigned an index i and its parameters are supplied as arrays of
values, where the i-th value is the attribute for the i-th container. In this
case, dpdk_c0 and dpdk_c1 are connected in a pair, while dpdk_c2 should
connect to a container deployed on another host.
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Table 4.4: List of parameters accepted by the remote test configuration
script. In addition, the script accepts all parameters listed in Table 4.2,
with the exception of the --conf-filename parameter, which is ignored.

Parameter Has
Argument

Description

-H
--hostname

YES The name of the host on which the test
should be performed

-F
--remote-filename

YES

The path of the containers
configuration file for the remote host
(see Table 4.3 and Listing 4.1); the file
must be on the local host, it will be
copied on the remote one

within double quotes and separated by two dots (..): the three pa-
rameters are in order the minimum value, the increment between the
values of the generated list and the maximum value (included); for ex-
ample, the value "64..32..256" for the burst size parameter instructs
the script to iterate over the values "64 96 128 160 192 224 256". This
mechanism can be used as a shorthand when there is a need to iterate
over many values separated by a fixed increment.

Once all parameters are parsed, the script will generate a sequence of
test cases corresponding to all the possible combinations among all the
possible values for each parameters. It will then perform each test one
by one, organizing test results in a directory tree resembling the following
structure:

bst-size/vswitch/pkt-size/rate/
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Table 4.5: List of parameters accepted by the multiple tests configuration
script. A detailed description of the difference between list and sequence
parameters can be found in Section 4.3.3.

Parameter Has
Argument

Description

-r
--rate-params

YES
The desired sending rate; as parameter
it takes either a list or a specification of
a sequence of values

-p
--pkt-size-params

YES
The packet size; as parameter it takes
either a list or a specification of a
sequence of values

-b
--bst-size-params

YES
The burst size; as parameter it takes
either a list or a specification of a
sequence of values

-R
--use-raw-sock

NO Same as Table 4.2

-B
--use-block-sock

NO Same as Table 4.2

-c
--consume-data

NO Same as Table 4.2

-m
--use-multi

NO Same as Table 4.2

-t
--timeout

YES Same as Table 4.2

-v
--vswitch-list

YES A list of virtual switches to use, see
Table 4.2 for the possible values

-f
--conf-filename

YES Same as Table 4.2

-D
--debug

NO Same as Table 4.2

-H
--hostname

YES
Same as Table 4.4; if not provided the
test will be performed only on the local
host

-F
--remote-filename

YES Same as Table 4.4
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Experimental Results
To test the functionality of the developed framework we performed a set of
experiments in a real use-case scenario. The experiments were also carried
out as a way to compare the various available technologies and formulate
some general considerations.

5.1 Platform Description and Test Set-Up

Experiments were performed on two similar hosts. The first one has been
used for all local inter-container communication tests, while the latter has
been used in combination with the first for multi-host communication tests
(using containers as well).

The two hosts are two Dell PowerEdge R630 V4 servers, each equipped
with two Intel® Xeon® E5-2640 v4 CPUs at 2.40GHz, respectively 64 and
128GB of RAM, and an Intel® X710 DA2 Ethernet Controller for 10GbE
SFP+ each (used in SR-IOV experiments and multi-host scenarios). The
two Ethernet controllers have been connected directly with a 10Gigabit
Ethernet cable. Both hosts are configured with Ubuntu 18.04.3 LTS, Linux
kernel version 4.15.0-54, DPDK version 19.05, OVS version 2.11.1, Snabb
version 2019.01, and VPP version 19.08.

To maximize results reproducibility, the framework carries out each test
disabling CPU frequency scaling (governor set to performance and Turbo
Boost disabled) and it has been configured to avoid using hyperthreads to
deploy each testing application.

5.1.1 Testing Parameters

Evaluation of system performance is carried out by varying a set of param-
eters accepted by the framework via its command line tools. In particular,
the multiple tests configuration script ( run_testset ) has been used multiple
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times to iterate over a certain set of parameters for each fixed configura-
tion. Each configuration is represented by a set of containers and testing
applications deployed on one or two hosts and grouped in application pairs
(e.g. sender/receiver or client/server).

To easily identify which test is referred in this dissertation, to each
different parameters is assigned a symbol and a set of possible values. Ta-
ble 5.1 contains the description of each parameters, as well as what is the
meaning of the values that may be used. Using that notation, a test be-
tween a single sender and a receiver application deployed on the same host
and exchanging 64 bytes packets at 5Mpps in bursts of 32 packets using
VPP as virtual switch can be expressed for example with the following
tuple:

(D = throughput, L = local, S = 1vs1, V = vpp, P = 64, R = 5M,B = 32)

When showing test results, some of these parameters may be left free to
vary within a range of values. In that case, any non-explicitly set value in
a tuple means that that parameters is a free parameter of a certain set of
tests. For example, when showing the throughput achieved when varying
the sending rate, the R parameter will not be included within the tuple.

5.2 Kernel-Based Networking Performance

The first result we want to show is that performance achieved without using
kernel bypass techniques are less than satisfactory to achieve the require-
ments of many NFV scenarios, while techniques like vhost-user, DPDK
and SR-IOV offloading are able to achieve much higher performance on
similar set-ups. For example, when exchanging 64 bytes packets between a
single pair of sender and a receiver applications all DPDK-based solutions
are able to achieve at least a throughput of 2Mpps (see Fig. 5.1a), while
traditional sockets are not able to reach even 1Mpps.

Table 5.2 reports the maximum throughput achieved using the tradi-
tional socket APIs. As shown, the maximum performance obtained using
sockets is achieved bypassing part of the network stack using raw sockets
and sending packets in bursts; the burst size is also a significant factor when
determining maximum performance, as smaller burst sizes are negatively
affected by the higher number of system calls performed to exchange data.
In general, achieved performance is significantly impaired when a virtual
Ethernet port is used to connect two containers via linux-bridge with re-
spect to techniques that can bypass the Linux kernel. That is why all the
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Table 5.1: List of parameters used to run performance tests with the frame-
work.

Parameter Symbol Description

Test Dimension D Whether the test is done to evaluate
throughput or latency performance.

Hosts Used L Whether tests are limited to only “local”
communications or multi-host communica-
tions are tested (indicated as “remote”).

Containers Set S The number of container pairs deployed on
the host for the test duration; the values
are expressed as “NvsN ”, for example “1vs1”
means that there will be two containers in a
pair, while “4vs4” means four pairs of con-
tainers are deployed.

Virtual Switch V The virtual switch used to connect the con-
tainers; can be one among linux-bridge,
basicfwd (for the Basic Forwarding Sample
Application), ovs, snabb, sriov, vpp.

Packet Size P The size of each packet in bytes.
Sending Rate R The desired sending rate from either sender

or client applications, expressed in packets
per second.

Burst Size B The number of packets per burst.
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Table 5.2: Maximum throughput achieved for various socket-based solu-
tions.
(D = throughput, L = local, S = 1vs1, V = linux-bridge, P = 64, R =
1M,B = 64)

Technique Max Throughput
(kpps)

UDP sockets using send/recv 338
UDP sockets using sendmmsg/recvmmsg 409
Raw sockets using send/recv 360
Raw sockets using sendmmsg/recvmmsg 440

results presented in the following sections refer to kernel bypass technologies
only.

5.3 Throughput Performance Evaluation

Switching the to networking technologies based on kernel bypass, we first
evaluated how each of these technologies perform when increasing the de-
sired sending rate or the packet size between different tests with a fixed
burst size. We performed these tests both for single host inter-container
communications and host-to-host communications. Each test uses only a
fixed set of parameters and runs for 1minute, then an average of the mea-
sured throughput is calculated after discarding initial and final values, to
ensure skipping initial warm-up and shutdown phases. Note that the stan-
dard deviation among the averaged values was below 2.5% (and around
0.5% on average) for all the runs.

Given the exponential explosion of test cases, only significative and
representative results are shown in this section and following sections.

5.3.1 Single Host Throughput Performance

First we will show results achieved with a single pair of containers deployed
on a single host. In these tests we varied the desired sending rate from
1Mpps to 20Mpps, the packet size from 64 bytes to 1500 bytes and we
chose between two typical values for the burst size, 32 and 256 packets per
burst:

(D = throughput, L = local, S = 1vs1)
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(a) (D = throughput, L = local, S = 1vs1, B = 32, P = 64)
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Figure 5.1: Receiving rates obtained varying the sending rate for fixed
packet and burst sizes on a single host.

63



CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.1 shows the achieved receiving rates in Mpps (on the Y axis)
while varying the sending rate (on the X axis) for a fixed burst size of
32 packets. In the figure, each plot corresponds to a certain value of the
packet size, as indicated in the respective captions. In all our tests, each
networking solution is able to achieve the desired throughput up to a certain
maximum value, after which any additional packet sent is dropped before
reaching its destination. This is a common characteristic among all our
evaluations, thus we will move the discussion to the maximum achievable
throughput for each networking solution, varying the other parameters.

Figure 5.2 shows the maximum receiving rates achieved in all our tests
that employed only two containers on a single host for a fixed burst size
of 32 packets. In each plot, the achieved rate is expressed on the Y axis
(either in Mpps or in Gbps) as function of the size of each packet on the X
axis, for which a logarithmic scale has been used.

Among the solutions that use kernel bypass techniques, the maximum
performance for these settings are achieved offloading network traffic to
the SR-IOV enabled Ethernet controller, taking advantage of its embedded
hardware switch. The Basic Forwarding Sample Application ranked second
overall and, as expected, first among the virtio-based networking solutions,
followed right after by VPP. It must be noted however that the former
virtual switch cannot be used in real use-case scenarios, as it does not
implement any real switching logic, it just forwards all the packets received
from a given port to another statically assigned port. The very small
performance gap between the Basic Forwarding Sample Application and
VPP shows that the batch packet processing features implemented in the
latter are able to amortize most of the overhead over the large amount of
packets flowing through the switch, achieving very low per-packet overhead
values. Finally, OVS and Snabb follow.

Comparing these performance with previous evaluations performed dur-
ing the development of the framework [1], we were able to identify as major
bottleneck for Snabb the virtual switch component included within our min-
imal Snabb configuration (which is also provided by Snabb). In fact, when
the two virtio ports assigned to a Snabb instance are interconnected by a
simple logical wire instead of a learning L2 switch (as in our previous eval-
uations [1]) the system is able to achieve much better performance, making
Snabb the most efficient solution among virtio-based virtual switches, at
least for relatively small packet sizes.

Notice that while the maximum throughput in terms ofMpps is achieved
with the smallest of the packet sizes (64 bytes), when moving to Gbps as
comparison unit the throughput increases almost logarithmically with the
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Figure 5.2: Maximum throughput achieved on a single host between two
containers per packet size using 32 packets per burst. The two plots show
the difference when evaluating throughput inMpps instead of Gbps. Notice
that for the X axis a logarithmic scale has been adopted.
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(a) (D = throughput, L = local, S = 1vs1, B = 256)
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Figure 5.3: Maximum throughput achieved on a single host between two
containers per packet size using 256 packets per burst. The two plots show
the difference when evaluating throughput inMpps instead of Gbps. Notice
that for the X axis a logarithmic scale has been adopted.
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increase of the packet size for all testes solutions, as shown in Fig. 5.2b.
In both plots, it is clear how the achievable traffic by a single pair

of sender/receiver applications deployed on the same host is limited by
either the capability of the CPUs to move packets from a virtio port to
another (for the software-based virtual switches) or by the limitations of the
hardware SR-IOV device. Since all the virtio-based implementations are
equivalent for bigger packet sizes in terms of throughput, we conclude that
for big packet sizes the various software implementations of L2 switching
functionalities are all equivalent and the only limitation is represented by
how fast packets can be transferred between ports by the DPDK-based
implementation of vhost-user. Given also the slightly superior performance
achieved by SR-IOV, we also conclude that the hardware implementation of
the virtual switch is more efficient at moving huge amounts of data between
CPU cores than the equivalent software implementations that we tested,
at least on our host.

Finally, Fig. 5.3 shows the achieved throughput when changing the burst
size to 256 packets. Comparing these results with Fig. 5.2, we conclude
that Snabb performance scale better with the burst size, improving up to
performance very close to the what OVS achieves in the same scenario, but
again VPP is the best solution among the software switches and SR-IOV
is still the overall best. Their performance do not seem to be influenced
much when varying the burst size from 32 packets to 256 packets.

5.3.2 Multiple Host Throughput Performance

To test inter-container communications between different hosts, we re-
peated the tests described in the previous section, this time deploying the
sender application on one host and the receiver application on the other.:

(D = throughput, L = remote, S = 1vs1, V ∈ {ovs, sriov, vpp})

In all our tests involving multiple hosts, the two hosts communicate
through a direct 10Gigabit Ethernet cable connected to the SR-IOV Eth-
ernet devices installed in each host. Notice that since the Basic Forwarding
Sample Application application is not able to multiplex traffic from mul-
tiple input ports into a single output port, it has been excluded from out
multiple host performance evaluations. Snabb has been excluded too, as it
does not implement the correct drivers for our NIC device connecting the
two hosts.

Our tests again show that each networking solution is able to achieve the
desired throughput value up to a certain maximum, which depends on the
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virtual switch adopted, as witnessed in our previous single host evaluations.
Thus we will only consider the maximum achieved throughput in further
exposition.

Figure 5.4 shows the maximum receiving rates achieved in all our tests
that employed only two containers on a two hosts for a fixed burst size of
32 packets for various packet sizes. Again, in each plot a logarithmic scale
has been used for the X axis.

Comparing this figure to previous ones, it is clear that a big limiting fac-
tor for each of these technologies is the maximum throughput determined
by the Ethernet standard; while before it was possible to exchange packets
well over 10Gbps, the limitations of the 10Gigabit Ethernet standard now
forbids this option. It is interesting to notice how this time there is no domi-
nating solution over the others: while SR-IOV can reach higher throughput
for small packet sizes, both OVS and VPP perform better for bigger ones.
This could be due to the fact that when no SR-IOV VFs are instantiated
the NIC device has more resources that can be used to actually send pack-
ets over the network. In this situation, packet processing operations are not
performed because the next destination of each Ethernet frame is implicitly
the device on the other end of the cable. Performance achieved by OVS
and VPP for small packet sizes (up to 256 bytes) are exactly the same as
the ones achieved in previous experiments, while for SR-IOV performance
are still comparable with the previous ones; thus we conclude that when
the expected traffic among a pair of components is composed by very small
packets it is irrelevant whether the two components are deployed on the
same host or on two (directly connected) different hosts from a throughput
perspective.

5.4 Throughput Performance Scalability

While the previous tests gave us some insightful results, they only consider
NFV systems composed by only a single pair of components. This is not a
realistic situation for a complete NFV system because of the very low re-
source utilization: to fully utilize system resources a multitude components
should be deployed on the same host or on multiple hosts. That’s why in
this section we consider some more realistic scenarios in which multiple
pairs of components are deployed on one or multiple hosts.
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Figure 5.4: Maximum throughput achieved between two containers de-
ployed on two hosts per packet size using 32 packets per burst. The two
plots show the difference when evaluating throughput in Mpps instead of
Gbps. Notice that for the X axis a logarithmic scale has been adopted.

69



CHAPTER 5. EXPERIMENTAL RESULTS

5.4.1 Single Host Throughput Performance
Scalability

First we will show results achieved with a multiple pairs of containers
deployed on a single host. Like in previous tests, we varied the desired
sending rate from 1Mpps to 20Mpps, the packet size from 64 bytes to
1500 bytes and we chose between two typical values for the burst size, 32
and 256 packets per burst. However in this scenario multiple pairs of com-
ponents will be deployed on the same host; in particular, we compared
performance achieved in our previous 1vs1 tests with the ones obtained
with with 4 (2vs2) and then 8 containers (4vs4) running sender/receiver
applications on the same host:

(D = throughput, L = local, S ∈ {1vs1, 2vs2, 4vs4})

In all test configurations, each of the sender and receiver applications
will be started with the same set of parameters (e.g. using the same packet
sending rate simultaneously for each sender application).

Results will be shown from two different perspectives:

• First we will consider the receiving applications point of view; in this
evaluation we will consider the average of the receiving rates regis-
tered by the applications running simultaneously as our performance
metric. This is the average amount of traffic that each application is
able to sustain when deployed with a particular configuration.

• Then we will move on to the virtual switch point of view, in which
the amount of traffic correctly handled is determined by the sum of
all the packets correctly delivered to receiver applications at the same
time.

The relationship between these two perspective is quite simple, as they
are simply related by the following formula, in which M is the mean of the
receiving rates declared by each application, N is the number of receiver
applications deployed on the same host, and T is the total throughput
sustainable by the virtual switch:

T = M ·N

Again, in further exposition we will show only the maximum achievable
throughput in each of our different test configurations as a similar behavior
to previous tests has been observed when varying the sending rate.
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Figure 5.5: Maximum throughput achieved on a single host between two
containers per packet size using 32 packets per burst. The two plots show
the difference between 2vs2 and 4vs4 scenarios. Notice that for the X axis
a logarithmic scale has been adopted.
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Figure 5.5 shows the maximum average receiving rates M achieved in
our tests with 4 and 8 containers respectively, expressed in Mpps, as regis-
tered by each receiving application. First we notice that the overall rank-
ing among virtual switches remains slightly unchanged, at least for small
packets. In particular, when the packet size is relatively small the total
throughput of the system seems to be partitioned among all containers
participating when compared to the 1vs1 tests shown in Fig. 5.2. With
the increase of the packet size however performance of each virtual switch
get slightly better, although this behavior depends on the number of active
participant in each test.

To better understand the phenomenon, Fig. 5.6 shows how the average
per-application throughput (in Mpps) scales over the number of active par-
ticipants in the system for each virtual switch, first with 64 bytes and then
with 1500 bytes per packet. If we consider the case of 1500 bytes packets,
virtio-based virtual switches are able to sustain 2 senders with an aver-
age performance drop for each receiver application under 20% with respect
to the single sender scenario, while with SR-IOV the per-application per-
formance drop for 2 senders is around 2%. However, when moving to 4
senders and 4 receivers, the per-application performance drop for virtio-
based switches is 67% on average, while per-application performance with
SR-IOV drops only by 18% in the same scenario.

If we consider the total throughput of the system instead of the per-
application performance, it is clear how SR-IOV can scale much better with
respect to the other solutions (at least for bigger packet sizes), as depicted
in Fig. 5.7. While for smaller packet sizes the total throughput that all
virtual switching solutions are able to process remains unchanged with the
number of participants, for big packets SR-IOV is able to sustain the new
traffic almost linearly with the number of participants. From these results
we conclude that while for virtio-based solutions the major bottleneck of the
system is the throughput in terms of Gbps delivered among CPU cores, for
a SR-IOV device the major limitation is represented by the actual number
of packets exchanged.

Finally, notice that we did not show a similar comparison for different
burst sizes, because the same reasoning shown in this section for a burst size
of 32 packets can be applied to 256 packets per burst, since both scenarios
present very similar results.

72



CHAPTER 5. EXPERIMENTAL RESULTS

1vs1 2vs2 4vs4
0

2

4

6

8

10

12

14

16

18

Scenario S

M
ax

im
um

T
hr
ou

gh
pu

t
[M

p
p
s]

basicfwd
ovs

snabb
sriov
vpp

(a) (D = throughput, L = local, P = 64, B = 32)

1vs1 2vs2 4vs4
0

0.25

0.5

0.75

1

1.25

1.5

Scenario S

M
ax

im
um

T
hr
ou

gh
pu

t
[M

p
p
s]

basicfwd
ovs

snabb
sriov
vpp

(b) (D = throughput, L = local, P = 1500, B = 32)

Figure 5.6: Maximum throughput achieved on a single host varying the
number of simultaneous participants using packets of 64 and 1500 bytes
respectively.
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Figure 5.7: Maximum total throughput achieved on a single host varying
the number of simultaneous participants using packets of 64 and 1500 bytes
respectively.
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5.4.2 Multiple Hosts Throughput Performance
Scalability

When deploying applications on multiple containers, we observed again
slightly different behaviors depending on the packet size. For these tests
we decided to increase the number of participants up to 4 containers per
host (for a total of 8 containers), since the amount of resources at our
disposal doubled with respect to single host evaluations:

(D = throughput, L = remote, S ∈ {1vs1, 2vs2, 4vs4, 8vs8})

In this situation, the most relevant statistic is represented by the max-
imum total throughput of the system depending on the number of partic-
ipants, depicted in Fig. 5.8. In the figure we can observe again different
behaviors depending on the packet size. For bigger packets (Fig. 5.8a),
the major bottleneck of the system remains the limitation of the Ether-
net standard, as maximum performance achieved are not affected by the
number containers deployed on both hosts. For smaller ones (Fig. 5.8a)
the bottleneck depends on the virtual switch in use: while SR-IOV is still
mostly subject to the limitations of the Ethernet cable, both OVS and VPP
are still limited by the CPU. In fact, OVS and VPP performance remain
unchanged between single host and multiple host test configurations for
64 bytes packets.

5.5 Latency Performance Evaluation

After evaluating how the various options available influence the achievable
throughput we moved on to check what is the round-trip latency between
two applications deployed in an NFV scenario using similar scenarios. For
this kind of tests we were interested to find out the minimum latency achiev-
able with each virtual switch to evaluate the per-packet processing overhead
and how that scales when multiple packets are received in a very short span
of time, by increasing the burst size.

For this purpose, a single pair of client/server applications has been
deployed on a single or multiple hosts to perform each evaluation. Each
test is configured to exchange a very low number of packets per second,
enough so that there is no interference between the processing of a burst of
packets and the following one. After some initial evaluations, we concluded
that a sending rate of 1000 pps is small enough to avoid any interference
while still providing enough data for each test to be statistically relevant.
For example, for the minimum burst size used in our evaluations of 4 packets
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Figure 5.8: Maximum total throughput achieved between containers de-
ployed on different hosts varying the number of simultaneous participants.
The throughput is here expressed in Gbps to compare it with the physical
limit of 10Gbps of the Ethernet standard.
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Figure 5.9: Average round-trip latency achieved on a single host between
two containers per packet size (including Snabb).

per burst, the interval between the generation of a burst of packets and the
following one is 4ms, which is much larger than the highest value of round-
trip latency that we measured for that burst size. Similar results are true
for bigger burst sizes.

5.5.1 Single Host Latency Performance

This test configuration is meant to evaluate the per-packet overhead of each
virtual switch option to forward packets only on the local host; in these
tests we varied both burst size from 4 packets to 128 packets per burst and
the packet size from 64 bytes to 1500 bytes:

(D = latency, L = local, S = 1vs1, R = 1000)

Figure 5.9 shows the measured round-trip latency in microseconds as
function of the packet size with 4 packets per burst. From the figure it
is clear that Snabb performs poorly with respect to all the other virtual
switches: while all the other virtual switches maintain the average delay
well below 40 µs, Snabb’s delay is always greater than 60 µs, even for smaller
packet sizes. This is a behavior that we witnessed in all of our tests,
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Figure 5.10: Average round-trip latency achieved on a single host between
two containers per packet size (continues next page).
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Figure 5.10 (cont.): Average round-trip latency achieved on a single host
between two containers per packet size.

regardless of the applied parameters; that’s why in all our other plots Snabb
has been excluded for the sake of clarity when examining the other options.

Figure 5.10 shows the same results of Fig. 5.9 without including Snabb.
The figure shows that only virtio-based solutions are able to achieve single-
digit microsecond round-trip latency on the local host, while SR-IOV has
a higher latency for small packet and burst sizes. When the burst size
increases the roles are reversed: starting from 32 packets per burst, SR-
IOV achieves smaller round-trip latency than software virtual switches,
although it is never able to achieve a latency smaller than 10 µs. From this
we infer that SR-IOV performance are less influenced by the variation of
the burst size with respect to the other options available and thus more
suitable when the traffic on the local machine is grouped into bigger bursts.

5.5.2 Multiple Host Latency Performance

The last tests we performed are meant to evaluate the differences among
OVS, VPP and SR-IOV in terms of round-trip latency between two hosts,
using the same parameters of local latency tests:

(D = latency, L = remote, S = 1vs1, R = 1000)
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Figure 5.11: Average round-trip latency achieved on between between two
containers deployed on different hosts per packet size (continues next page).
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Figure 5.11 (cont.): Average round-trip latency achieved on between be-
tween two containers deployed on different hosts per packet size.

Figure 5.11 shows the measured round-trip latency in microseconds as
function of the packet size between two applications deployed on separate
hosts. In the figure we can notice that SR-IOV achieves lower latency with
respect to OVS and VPP. While for local communications the performance
of the two software switches are mostly comparable with each other, for re-
mote communications the performance of the two switches vary depending
on the burst size: while for smaller burst sizes (Fig. 5.11a) VPP has better
performance, comparable with the ones achieved by SR-IOV, as the burst
size increases OVS becomes the more efficient of the two from a latency
point of view. In particular, for burst sizes bigger than 32 packets per burst
VPP performance drop significantly with respect to the other two solutions.
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Conclusions
Currently, the complexity of network infrastructure management is limited
by traditional approaches to implement services and network functions as
highly specialized middle-boxes and other physical appliances. To overcome
the ossification affecting Internet infrastructure, new approaches that make
use of virtualization techniques typically adopted within cloud infrastruc-
tures are being developed to deploy more easily new functions and increase
the dynamicity of network infrastructures as a whole. This transition from
a hardware-oriented approach to software-based network functions using
virtualization techniques has been subject of many studies over the past
few years and it has been demonstrated to be effective to reduce costs of
operations and management of network infrastructures.

The new opportunities and challenges presented by this transition to-
wards NFV based approaches demonstrated that full virtualization tech-
niques, relying on VMs, introduce too much overheads on network com-
munications to actually allow for a wide adoption of NFV. In particular,
as long as both PNFs and VNFs will coexist within the same infrastruc-
tures overheads introduced by VMs will limit the effectiveness of these new
approaches in reducing costs while maintaining similar service levels.

To tackle these problems, most systems that adopt NFV as networking
paradigm use OS containers as virtualization providers, which are far more
lightweight than VMs and thus allow VNFs to match the desired perfor-
mance. In addition, user-space implementations of network protocols and
device drivers enhance network performance bypassing the kernel for both
local and remote communications. The diffusion of open-source frame-
works like DPDK allowed developers to write portable applications that
can achieve very high levels of performance on a multitude of supported
platforms, paving the way for a growing number of network functions to
be implemented as software network functions.

The introduction of a number of software network switches implemen-
tations (e.g. Open vSwitch), as well as new devices with hardware sup-
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port for virtual switching, like SR-IOV Ethernet controllers, allow multiple
VNF instances to be deployed on the same host, enabling greater resource
utilization. Given the central role of these virtual switches in NFV infras-
tructures, it is essential to analyze the performance of these solutions with
respect to each other when transitioning to the new NFV approach.

This thesis focused on the design and implementation of a software
framework aimed to evaluate and compare network performance of various
virtual networking solutions that can be adopted to connect various VNFs
deployed as Linux containers in one or multiple hosts. This new tool can be
easily deployed on private cloud infrastructures to evaluate which solution
is the most suitable to be used in a real production environment.

To illustrate the functionalities of this framework, a number of tests and
performance evaluations of commonly used virtual switches have been per-
formed with synthetic workloads emulating real use-case scenarios. From
these tests, we concluded that the internal switch of SR-IOV network de-
vices is more efficient than other solutions when communication between
multiple applications deployed on the same host is a key priority; it is both
able to sustain higher throughput per applications, especially for bigger
packet sizes, and it scales very efficiently with the number of applications
deployed on the same system. In addition, SR-IOV devices have the ad-
vantage of not requiring additional CPU resources to effectively support
multiple network streams, needing only one CPU core for operations and
management of VFs. In similar scenarios, VPP is the most efficient among
software-based virtual switches, but it needs more computational power
than SR-IOV (since packet processing operations are implemented in soft-
ware) and it cannot scale along with the number of streams on the local host
unless additional CPUs are dedicated for its packet processing operations.
Same reasoning applies to other software-based virtual switches.

On the other hand, when traffic is forwarded from one host to another
the efficiency of any virtual switch is mostly limited by throughput defined
by the Ethernet standard. In this case, both SR-IOV and software-based
virtual switches show similar performance, although the latter seem to
attain better results within the limits imposed by the Ethernet standard.

Finally, from a latency perspective we demonstrated that both for local
and remote communications SR-IOV can attain smaller round-trip latency
with respect to the other solutions with bigger burst sizes. Among software
virtual switch implementations, we show that Snabb is highly inadequate
with respect to the other solutions available for local communications, but
there is no dominating solution with respect to the others, as their perfor-
mance depend strongly on the burst size and the other parameters used to
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generate synthetic network traffic.

6.1 Future Work

Despite the customizability of this framework, thanks to its many param-
eters that can be used for both installation and performance testing, one
key functionality that lacks implementation is the capability to change the
amount of resources allocated to each virtual switch per test run. Right
now, each virtual switch is configured to use a static number of cores. This
is particularly important for all the software-based implementations (such
as OVS or VPP) which can spawn multiple worker threads on more than
one CPU core; each of these worker threads can contribute to the process-
ing of the traffic flowing through the switch, thus the total throughput of
each switch may vary depending on the amount of processing resources
allocated. It is important to notice however that while allocating more re-
sources to each switch can potentially improve network performance, it also
steals processing power from applications, reducing the number of VNFs
that can be deployed on the same machine. An evaluation of this perfor-
mance/scalability trade-off is necessary to efficiently design a networking
infrastructure.

During the development of the framework we repeated performance
evaluations multiple times, each time we upgraded one or multiple com-
ponents to their most recent stable versions. From these evaluations we
noticed that these technologies are steadily evolving over time, with each
new version being more efficient than the previous one. That is also why it
could be interesting to repeat again these performance evaluations in the
future for new versions of the software switches, checking whether they can
reach the superior performance achieved only by SR-IOV in our evalua-
tions.

Finally, while the framework developed for this thesis can be already
used to effectively compare and evaluate some of the most commonly
adopted switching solutions in the industry, some other technologies have
been postponed for future implementation and analysis. In fact, the frame-
work is only compatible with virtio-based software switches or NICs that
implement SR-IOV functionalities, but not all options available on the
market make use of these two technologies. Examples of technologies that
the framework is planned to support include NetVM [79] and the Netmap
framework [55] (along with its associated virtual switch, VALE [80]).
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Acronyms

Acronyms Full names Acronyms Full names

CAPEX Capital Expenditure COTS Commercial
Off-the-Shelf

DPDK Data Plane
Development Kit

EAL Environment
Abstraction Layer

ETSI European
Telecommunications
Standards Institute

FD.io Fast Data Project

HPC High Performance
Computing

IaaS Infrastructure as a
Service

IDS Intrusion Detection
System

IP Internet Protocol

ISG Industry
Specification Group

LXC Linux Containers

MAC Media Access
Control

MANO Management and
Orchestration

N-PoP Network Point of
Presence

NAPI Linux New API

NAS Network Attached
Storage

NAT Network Address
Translator

NFV Network Function
Virtualization

NFVI Network Function
Virtualization
Infrastructure

NFVO NFV Orchestrator NIC Network Interface
Controller

NUMA Non-Uniform
Memory Access

OPEX Operating Expense

OS Operating System OVS Open vSwitch
PaaS Platform as a

Service
PF Physical Function

(Continues on next page)
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Acronyms

Acronyms Full names Acronyms Full names

PMD Poll Mode Driver PNF Physical Network
Function

QoS Quality of Service RDMA Remote Direct
Memory Access

SAN Storage Area
Network

SDN Software-Defined
Networking

SR-IOV Single-Root I/O
Virtualization

TCP Transmission
Control Protocol

TLB Translation
Lookaside Buffer

TSC Time Stamp
Counter

UDP User Datagram
Protocol

VF Virtual Function

VIM Virtual
Infrastructure
Manager

VM Virtual Machine

VMM Virtual Machine
Manager

VNF Virtualized Network
Function

VNFC Virtual Network
Function
Component

VNFM VNF Manager

VPP Vector Packet
Processing
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