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A B S T R A C T

This paper proposes a novel framework providing a declarative interface to access real-time process scheduling
services available in an operating system kernel. The main idea is to let applications declare their temporal
requirements or characteristics without knowing exactly which underlying scheduling algorithms are offered
by the system. The proposed framework can adequately handle such a set of heterogeneous requirements
configuring the platform and partitioning the requests among the available multitude of cores, so to exploit
the various scheduling disciplines that are available in the kernel, matching application requirements in
the best possible way. The framework is realized with a modular architecture in which different plugins
handle independently certain real-time scheduling features. The architecture is designed to make its behavior
customization easier and enhance the support for other operating systems by introducing and configuring
additional plugins.
1. Introduction

In the past decade, the global interest running real-time applica-
tions in distributed or embedded systems rose considerably. Real-time
applications however are not limited to specialized systems anymore:
multimedia applications like audio/video processing and streaming,
gaming, etc. are notable examples of applications with soft or firm
real-time constraints that run on General Purpose Operating Systems
(GPOSes). To support these applications, modern GPOSes evolved to
provide a set of features that allow the coexistence of both real-time
and non real-time applications on the same host.

Among these GPOSes, Linux is a common choice for applications
that have real-time requirements, thanks to its rich support for multi-
media peripherals, the plethora of libraries and tools readily available
for media processing, and the active support of a vast community
of open-source developers. In addition, the Android operating system
(OS), based on Linux, has become a popular choice for a number
of embedded systems for multimedia services, from smartphones and
tablets to infotainment systems deployed in modern cars. However,
Linux is not the only choice when it comes to systems that provide
support for real-time applications; another notable example is FreeBSD,
which is also the base for some OSes running on many modern game
consoles nowadays.

Similarly to any other GPOS, the Linux kernel development fo-
cused on minimizing average OS overheads and optimizing in-kernel
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operations to maximize the performance of user-space applications,
while keeping a good responsiveness for interactive workloads, notably
user interactions and multimedia applications. However, Linux has also
been consistently improving its support for real-time workloads over
the past decade, providing a growing set of features targeting real-
time applications [1,2]: the inclusion of POSIX real-time extensions [3]
and the support for real-time mutexes; high-resolution timers with
nano-second precision; the removal of the Big Kernel Lock (BKL)1;
enhancements to the kernel preemptibility options; the introduction of
NO_HZ for reducing overheads of the periodic bookkeeping timer; the
PREEMPT_RT [2,4,5] variant that reduces worst-case scheduling laten-
cies by running device drivers as kernel threads that can be scheduled
and turning most of the spinlocks into mutexes; and the addition of
the SCHED_DEADLINE process scheduler [6], implementing a global
Earliest Deadline First (EDF) algorithm (that can also be configured as
partitioned or clustered EDF) that uses a multi-processor variant of the
Constant Bandwidth Server (CBS) [7] algorithm to provide temporal
isolation among tasks. In addition, a number of frameworks and mid-
dleware have been developed to further enhance the capabilities of
Linux as a powerful development platform for real-time applications.
These features increased the relevance of Linux as a suitable platform to
develop soft real-time applications, even with respect to other modern
GPOSes.

In general, GPOSes may be required to host a plethora of different
applications, each characterized by their own temporal characteristics
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and real-time requirements; these may range from interactive applica-
tions, to multimedia, to gaming and virtual-reality tools, to real-time
control applications for factory automation. These applications may
activate periodically or sporadically, they may require access to real-
time scheduling priorities, or sometimes their timing requirements are
unknown a priori and they should be inferred by comparing their
periodicity to other co-located applications. Finally, these systems may
need to host simultaneously both real-time and non real-time ap-
plications. In a true component-based approach for realizing complex
eal-time systems, it is all but trivial to understand how to let all of
hese applications coexist on the same system, exploiting the different
chedulers that are available, and how to configure them for an optimal
se of an underlying multi-core platform.

.1. Contributions

In this work, we provide an overview of the Real-Time Framework
ReTiF), aimed at providing controlled access to real-time CPU scheduling
eatures to unprivileged applications on POSIX-compliant GPOSes. The goal
f this framework is to improve the usability of existing real-time
apabilities of various OSes by providing a unified and portable API;
his new middleware can be used to declare temporal characteristics
f real-time applications, independently of the particular scheduling
olicy that will be selected to satisfy the declared requirements. This
ew declarative approach allows applications characterized by hetero-
eneous requirements to coexist on the same host and use the same API
ndependently of the underlying OS, improving their portability across
OSIX-compliant GPOSes.

To achieve this goal, ReTiF adopts a modular approach to schedul-
ng, in which a set of plugins are used to translate from the generic at-
ributes declared by each application to the proper configurations of the
eal-time features exposed by the underlying kernel. To avoid unwanted
onsequences of unrestricted access to real-time scheduling features
f the operating system, we present here for the first time the access
ontrol model that we implemented for the framework, providing
ystem administrators a comprehensive mechanism to manage access to
eal-time resources on target machines. With this new tool, every aspect
f the framework can be configured and each request is checked against
he policies defined by the system administrator, which maintains total
ontrol on the behavior of the managed system. With ReTiF , real-time
pplications can be associated with one of multiple scheduling policies
ctive at the same time on multi-core platforms with ease.

This modularity is the key to offer support to a plethora of schedul-
ng paradigms on the same OS (e.g., rate monotonic is used on some
PUs, while SCHED_DEADLINE reservations is used on others), but
lso to provide portability of real-time applications across multiple
Ses, by developing platform-specific implementations of certain plu-
ins.

This work constitutes an extended version of the paper already ap-
eared in [8], where: (1) we provide a more comprehensive description
f ReTiF in Section 3, including its internals and the interactions among
ts main components; (2) we present for the first time the security
odel that we recently added to ReTiF in Section 4, which is of ut-
ost importance when running unprivileged real-time applications on

hared systems; (3) we present a more detailed and comprehensive dis-
ussion of the related research in Section 2; (4) we discuss current limi-
ations of the proposed framework and how we plan to address them in
uture revisions in Section 7; and (5) we show a novel extensive evalu-
tion of the overheads introduced by the framework with respect to di-
ectly accessing real-time features of the operating system in Section 6.

.2. Paper organization

This paper is organized as follows. After discussing related research
n Section 2, an overview of ReTiF is presented in Section 3, focusing

on the main decisions driving its design, followed by the description of
2

its access control model in Section 4. Some implementation details are
provided in Section 5, while experimental data highlighting its perfor-
mance and overheads are presented in Section 6. Finally, limitations of
this approach are thoroughly addressed in Section 7 and conclusions
are discussed in Section 8, along with possible directions for future
research on the topic.

2. Related work

This section briefly reviews related works appeared in the scientific
literature about mechanisms and middleware layers supporting real-
time applications on GPOSes, with a particular focus on operative
systems based on the Linux kernel and its extensions.

Support for real-time applications in a GPOS like Linux was first
introduced by running the system on top of a micro-kernel layer placed
between the hardware and the kernel itself, acting like a hypervi-
sor. In this approach, real-time and ‘‘normal’’ tasks were treated very
differently, with the former being handled by the real-time micro-
kernel layer and the latter scheduled at lower priority by the Linux
scheduler. The most important implementations of this paradigm have
been RT-Linux, proposed by Yodaiken et al. [9], and RTAI, proposed
by Mantegazza et al. [10]. The latter has also been later forked by
Gerum et al. into another project called Xenomai [11]. Both solutions
require applications to use custom APIs and heavy modifications to
the Linux kernel. Therefore, these solutions are not suitable for certain
applications that should run in user-space context as unprivileged
processes, as in the case of audio/video processing applications with
soft real-time requirements. The ARINC-653 specification [12] uses a
similar approach, implementing a kernel-level partitioning mechanism
for Linux. As required by the avionic specifications, this implementa-
tion provides a high level of isolation among applications, but it cannot
be easily adapted for other application fields.

Many real-time kernel extensions and middleware solutions have
been proposed to support at the same time hard and soft real-time ap-
plications on Linux or other GPOSes by directly extending or patching
the system scheduler. However, most implementations limit their sup-
port to fixed priority (FP) scheduling without providing any temporal
isolation among real-time tasks and creating a potential disruption of
the guarantees offered to tasks executing at lower priorities. These ap-
proaches are suitable for hard real-time tasks with strict requirements,
but find little application in the multimedia field. A representative
example of these approaches is KURT Linux [13], which consists in a
significant modification of the Linux internal scheduling mechanisms.
KURT introduces 3 distinct operational modes: in normal mode the
system behaves like a GPOS; in real-time mode only real-time processes
can run while normal processes are blocked; finally, in mixed mode both
real-time and non real-time applications can be executed concurrently.
In particular, in mixed mode normal processes can run only in the slack
time left after scheduling all real-time applications; this guarantees
that real-time applications have higher priority with respect to normal
processes.

A similar concept was pursued by the OCERA EU project,2 where
RT-Linux was integrated with custom modifications to the Linux ker-
nel, so to achieve the coexistence of hard and soft real-time applica-
tions [14]. Hard real-time processes could rely on a POSIX API adaptor
to the RT-Linux functionality. Soft real-time processes could use a
custom API to interact with a set of dynamically loadable modules
realizing a variant [15] of the CBS algorithm to provide a reservation-
based scheduler exploiting a minimally invasive patch to the Linux
kernel.

In [16] authors present QRAM, an analytical model that uses quality
of service (QoS) to allocate multiple resources to real-time applications,
with the main goal of maximizing an overall QoS cost function for

2 More information at: http://www.ocera.net.
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the entire system. This approach was also later extended [17] with
an adaptive on-line optimization policy. Other works based on similar
techniques are [18], in which a QoS middleware mediates application
access to physical resources to support dynamic workloads, and Linux-
SRT [19], which enhances Linux to provide predictable scheduling
and QoS management tools. Another similar approach, called Firm-
RT, was presented by Srinivasan et al. [20] to support firm real-time
applications in which both soft real-time and time-sharing applications
can run concurrently on the same system. This last approach consists
in a set of modifications to the Linux kernel that provide support for
the stringent timing requirements of these applications.

In more recent years, many Linux-specific libraries have been devel-
oped to enhance the capability of the Linux kernel to support real-time
applications, especially without super-user privileges. A notable exam-
ple is the RealtimeKit (RTKit) library3, included as a dependency of
the PulseAudio sound infrastructure for POSIX OSes4. RTKit is a D-Bus
system service that can change the scheduling policy of user processes
or threads on request. However, the RTKit daemon is only intended to
be used to let user processes access the SCHED_RR scheduling policy.
A similar mechanism is provided in the nowadays Linux kernel by the
prlimit() system call and the related limits.conf configuration
file.

LITMUSRT [21] is a framework composed of a kernel patch and a re-
lated user-space interface that allows applications to schedule real-time
tasks using a wide variety of schedulers. LITMUSRT can be extended
with a plugin mechanism that lets system designers write their own
plugins, in which they can implement new scheduling algorithms. The
main goal of LITMUSRT is to provide the research community with a
test-bench for real-time scheduling algorithms on a real Linux-based
platform. While in this sense LITMUSRT can be successfully used to
investigate the behavior of novel scheduling algorithms, it does not
support multiple real-time scheduling algorithms at the same time.

Conversely, due to its nature, a GPOS should be capable of hosting
a variety of applications with heterogeneous temporal characteristics,
offering a scheduling layer that exposes a common interface for ex-
pressing application requirements. An effective way of providing both
temporal requirements declaration and isolation in a GPOS is the
combination of QoS contracts and resource reservation techniques.
Several algorithms and implementations have been proposed in the
literature along this direction. Aldea et al. proposed the Flexible In-
tegrated Real-time Scheduling Technologies (FIRST) architecture [22],
which is an OS-independent specification that organizes a number
of scheduling algorithms to work in cooperation, including both FP
and dynamic priority (DP) scheduling algorithms, in a hierarchical
scheduling architecture. The resulting architecture allows system de-
signers to build complex real-time systems by simply specifying the
real-time requirements of the desired applications. FIRST also relies on
reservation techniques to provide temporal isolation among real-time
tasks: real-time applications can leverage this framework to establish
QoS contracts with the system, which will then provide them a set
of guarantees. In addition, FIRST organizes multiple scheduling algo-
rithms, including both FP and EDF, to work in cooperation by assigning
each scheduler a server with its own temporal budgets. In principle,
any system can implement the FIRST Scheduling Framework (FSF) to
provide multi-scheduler support with the guarantees included in the
FIRST specification. FSF has been implemented in SHARK [23] and
MaRTE [24], but not in other GPOSes like Linux.

FRSH/FORB [25] is another middleware based on CORBA that
provides reservation scheduling across several physical resources, such
as CPUs, disks and network interfaces, to real-time applications. This
mechanism is made available through kernel-level extensions to the

3 For more info see https://github.com/heftig/rtkit
4 For more info see https://www.freedesktop.org/wiki/Software/

ulseAudio/
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Linux OS, one of them provided by the AQuoSA architecture [26]
supporting adaptive CPU reservations, and real-time extensions [27]
for wireless communications compatible with the IEEE 802.11 standard
series. FRSH/FORB has also been extended [28] with a transactional
API for handling multi-resource reservations in a distributed system.

The ExSched project [29] tries to support different OSes with a
plugin-based scheduler design. This framework is made of a kernel
module and a set of plugins that can be chosen by the system admin-
istrator. The ExSched framework aims to provide a unified scheduler
interface that can be leveraged to implement different schedulers with-
out patching the underlying OS. However, this feature comes with a
considerable cost in terms of performance: for example, the EDF sched-
uler plugin implementation introduces a huge overhead (about 180%
in the worst case) on the system compared to SCHED_DEADLINE
implementation on Linux [29]. Also, applications must be aware of
their exact timing parameters like task period, worst case execution
time, etc. to be effectively used with ExSched. Similar considerations
apply for a noteworthy attempt [30] of realizing a reservation-based
scheduler in the MINIX3 micro-kernel [31] as an external module that
can be loaded at run-time.

Another solution proposed by Parmer and West [32] called Hijack is
composed of a kernel module and an interposed execution environment
between the process address spaces and the kernel. Hijack introduces
some mechanisms to intercept system calls and interrupts via a kernel
module, which in turn forwards control of the request to a user-level
daemon. The daemon will elaborate the request and the response is
finally provided to the original application traversing this stack in the
opposite direction of the request.

Other frameworks target commercial operating systems. For ex-
ample, Benham et al. presented HSF-VxWorks [33], which introduces
support for Rate Monotonic (RM) and EDF hierarchical scheduling
to VxWorks OS without modifying its kernel. Another example is
HSF-FreeRTOS, proposed by Inam et al. [34], which implements a
hierarchical scheduling framework for FreeRTOS, providing support to
temporal isolation among applications running on a single processor.

In 2016, Wei et al. [35] proposed RT-ROS, a real-time ROS archi-
tecture that provides an integrated task execution environment that is
able to run real-time and non-real-time tasks in the same system. The
real-time tasks run on top of a real-time OS while non-real-time ones
run on Linux. The real-time OS and Linux run on different processor
cores, albeit with limited separation in terms of security.

Another work based on ROS was introduced in 2018 by Saito
et al. [36]: they presented a real-time scheduling framework, called
ROSCH, that added real-time features to ROS such as fail-safe func-
tionality, fixed-priority based directed acyclic graph (DAG), and a
synchronization system.

A solution for integrating real-time and non-real-time environments
for cloud computing was presented in [37]. Here the authors designed
RT-Open Stack, a cloud CPU resource management system for deploy-
ing real-time and non-real-time virtual machines. Based on a real-time
hypervisor (RT-Xen) and on the Open Stack cloud infrastructure, it
allows to execute both real-time and non-real-time virtual machines in
the same host.

The same authors of this paper presented a framework [8] that
supports heterogeneous sets of applications with different real-time
characteristics by allowing applications to declare timing requirements,
in an agnostic fashion with respect to the underlying available schedul-
ing policies. This is in clear contrast with the other solutions described
above, which support either FP or EDF/CBS scheduling or that require
real-time applications to know which scheduling policies are provided
by the underlying system and the relative parameters. In addition, this
novel framework is entirely implemented in user space and requires
no modification to the underlying OS: it is composed by a simple
daemon running with root privileges and an application library that
is used by real-time applications to interact with the daemon itself.

The architecture of that framework is inspired from a prior preliminary

https://github.com/heftig/rtkit
https://www.freedesktop.org/wiki/Software/PulseAudio/
https://www.freedesktop.org/wiki/Software/PulseAudio/
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Table 1
Comparison among real-time frameworks available for Linux.

Framework Multi-core Kernel modification Portability Sched. Alg.

RT-Linux No Patch Linux FP
RTAI Yes Patch Linux FP-FIFO, RR, EDF
Xenomai Yes Patch Linux FP, RR
KURT Linux Yes Patch Linux FP (SRMS)
HSF-VxWorks No – VxWorks FP, EDF
HSF-FreeRTOS No – FreeRTOS FP
AQuoSA No Patch + Kernel module Linux CBS-EDF
Firm-RT No Patch Linux FP (SRMS)
LITMUSRT Yes Patch + Kernel module Linux Module dependent
Linux-SRT Yes Patch + Kernel module Linux FP
OCERA No Patch Linux CBS-EDF
FSF No – MaRTE, SHARK Plugin dependent
Hijack No Kernel module Linux FP-RR
ExSched Yes Kernel module Linux FP, EDF
ReTiF Yes Noa POSIXb Plugin dependent

aFor more details, refer to Section 3.4.
bFor more details, refer to Section 7.
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orkshop paper [38] which, to the best of our knowledge, was never
ctually implemented before.

This paper constitutes an extension of our prior work [8] just
escribed above. In this paper, we highlight the features of that frame-
ork that characterize its portability across POSIX-compatible OSes and
e introduce a new access control mechanism that provides an addi-

ional level of security when accessing the real-time features provided
y this framework. With this new extension, system administrators can
ow specify a set of constraints that can be used to ensure certain
roperties for the system, especially when multiple unprivileged users
hare the same machine.

Table 1 shows a recap of the main characteristics of each real-time
ramework described in this section with respect to the proposed one,
hich is listed as the last entry. In the table, the column ‘‘Requires
ystem Modification’’ indicates whether each framework requires the
arget system to be either patched or to load custom kernel mod-
ls, the ‘‘Multi-core’’ column indicates whether each framework sup-
orts scheduling of tasks across multiple cores, while the ‘‘Portability’’
olumn indicates whether each framework can be ported to other
perating systems with little to no modifications. The last column,

‘Scheduling Algorithm’’, shows the supported scheduling algorithms by
he corresponding work. For the sake of clarity, the algorithm names
ere abbreviated as follows: FP for Fixed Priority, FP-FIFO for Fixed
riority with First-In-First-Out policy for tasks with the same priority,
P-RR for Fixed Priority with Round-Robin policy for tasks with the
ame priority, EDF for Earliest Deadline First, CBS-EDF for Constant
andwidth Server in conjunction with Earliest Deadline First, and SRMS
or Statistical Rate Monotonic Scheduling. Some of the listed works
an be extended with modules or plugins implementing additional
cheduling algorithms.

. Real-Time Framework (ReTiF)

In this section we present ReTiF , a software framework that we
ealized to ease access to real-time scheduling policies on Linux in a
eclarative fashion. The main focus of this project is to provide an
bstraction level to real-time applications that enables them to declare
set of real-time task and their scheduling parameters. From these

arameters, the framework takes care of selecting the most proper
cheduling technique and configuring the actual scheduling parameters
f the actual process/thread associated to each task specification, by
nteracting with the underlying OS.

This tool aims to meet at user-space level the requirements posed by
omplex real-time and multimedia applications by exposing a simple
et expressive interface. ReTiF allows system administrators to let
nprivileged users the capability to run applications with real-time con-
traints, without worrying about the underlying features exposed by the
4
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S; most of its implementation is entirely OS-agnostic, relying solely on
OSIX-compliant features. All non-standard interactions between ReTiF
nd the underlying OS is limited to a set of plugins, which can be
hosen at deployment time. For this reason, the framework itself does
ot require any modification of the underlying OS kernel, unless one
f the selected plugins explicitly requires certain features.

To accomplish these goals, ReTiF architecture is organized in two
ain components: a shared library that applications can use to declare

heir requirements and a daemon running with superuser privileges. In
his design, the daemon is the central authority that is in charge of man-
ging all real-time applications in the system; unprivileged processes
ill declare their real-time requirements using the API exposed by the

hared library and the daemon will set all their scheduling parameters
ccordingly. To avoid unwanted consequences of unregulated access
o real-time features of the system from unprivileged users, ReTiF also
mplements a flexible access control model that system administrators
an use to manage the amount of resources accessible to applications.
ore details on this model are provided in Section 4.

The API exposed by the shared library is purposely designed to be
ndependent from the scheduling algorithms or policies that are used to
eet the demands of each application. The set of parameters that can be
eclared by each application represents a set of typical parameters that
haracterizes simple independent real-time applications. It will then
e the role of the daemon to select the proper scheduling policy to
se to satisfy such requirements. ReTiF defines an API that should be
mplemented by scheduling services, in the form of plugins that will
e loaded into the daemon application at deployment time. System
dministrators can choose which set of plugins should be loaded and
hat policies should be used to grant certain user/groups access to the

ndividual plugins. Researchers and other developers can easily extend
he functionality of the framework, developing their own plugins, each
xposing a different algorithm or policy, all accessible with the generic
ser-space API. This approach is particularly useful to maintain the
ortability of the framework, limiting all special interactions with the
nderlying OS to each plugin.

Independently from the plugins loaded with the daemon at any
ime, applications can use the shared library to declare the parameters
f real-time tasks that they would like to run. For each request, the
aemon will then respond indicating whether or not it can be accepted
y one of the plugins in the current condition of the system. On
cceptance, a single execution flow—i.e. a POSIX process or thread—
an be dynamically attached to the accepted specifications, which only
epresents a set of accepted real-time parameters. After this operation,
he daemon instructs the selected plugin to set the actual scheduling
arameters of the attached execution flow accordingly; for example,
he EDF plugin (which relies on Linux SCHED_DEADLINE scheduler)

ill set up a CPU reservation when a process is attached to one of its
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accepted specifications. A rejected request can be re-submitted later
after relaxing some of the real-time parameters or after releasing some
resources in the system, by terminating other real-time applications.

Any process/thread managed by the framework can be dynamically
detached from the accepted scheduling parameters; after this operation
another process/thread can be attached to them or they can be released.

The real-time parameters that can be declared for each task are the
following ones:

1. a period 𝑇 , expressed in microseconds, which usually corre-
sponds to the minimum inter-arrival period between consecutive
task instances;

2. a runtime 𝑄, in microseconds, which usually is equal to the
worst-case execution time of each task instance;

3. a relative deadline 𝐷, that defaults to the same value as the
period 𝑇 , if specified;

4. a static priority 𝑃 , in the range of standard real-time POSIX
priorities.

The design principle that differentiates this framework from others
hown in Section 2 is the declarative approach to real-time parameters
pecification. The way this framework is designed, applications can
e implemented in a agnostic fashion with respect to the schedul-
ng algorithms (each implemented by a different plugin) that may
e available at runtime. For this reason, applications may declare
rom none to all of the real-time parameters described above for each
ask. The framework will then automatically match each scheduling
equest with the plugin that is the most suitable to handle the declared
pecifications. To achieve this goal, the daemon presents each request
o each plugin in an ordered fashion and expects them to respond
hether they can handle the request or some other plugin should. Each
lugin uses a well-defined API to inspect the parameters included in
ach request and chooses independently from other plugins to either
ccept or reject the given request. For this reason, different plugins may
ave different requirements—e.g. some parameters may be mandatory,
hile others may be ignored—and they may even perform complex
dmission control tests before choosing whether or not accepting the
ew task. If at least one plugin accepts a request, the daemon chooses
he most suitable among the accepting plugins and the task is added to
he list of tasks in the current active task set. The requesting application
an then bind the accepted scheduling parameters to its process or one
f its threads.

In general, plugins can admit or reject a task based on the list of
arameters included in each request. Since the admission policy may
hange from one plugin to another, the daemon delegates this operation
o each plugin, interrogating each of them in a predetermined order to
ind the best plugin for each request. The admission request can simply
e based on the presence/absence of certain parameters (e.g. period,
tatic priority, etc.) or it may rely on more complex tests that take into
ccount the current condition of the system, as represented by the tasks
lready accepted in the task set. In the latter situation, plugins should
heck for necessary conditions only—i.e. whether accepting the new
ask will inevitably lead the system into an unschedulable state. Tasks
ay specify whether they want to bypass this admission control test
pon task declaration, accepting all the risks that may follow.

Accepted tasks can later change their parameters, if the change does
ot result in the disruption of any other accepted request. This opera-
ion is atomic—i.e. multiple parameters can be changed atomically—
nd there is no guarantee about which plugin will be used to schedule a
ask following a successful change operation—meaning that on success
different plugin may be selected to schedule the task. When a change

equest fails, the task will maintain the same scheduling parameters and
lugin that were previously assigned by the framework. This operation
an be used to dynamically request more computational resources to
he system or to release them when not needed anymore.

Finally, tasks may also declare optionally two different values as
5

heir worst case execution time: in this case, 𝑄 is considered as the p
inimum runtime requested by the task, while the second value, 𝑄𝑑

will be a desired runtime (higher than 𝑄). In this situation, each plugin
is free to accept the request using any runtime in the range [𝑄,𝑄𝑑 ],
which will be called accepted runtime 𝑄𝑎. Any task can query the user
API to retrieve its own accepted runtime and it can use the returned
value to enable/disable optional paths in the execution flow accord-
ingly. To change the accepted runtime, a task can use another explicit
request, which will follow the rules described above for changing other
scheduling parameters.

3.1. Architecture overview

ReTiF is composed by three main components that interact through
ell-defined APIs: the ReTiF Daemon, the ReTiF Library, and the set of
lugins dynamically loaded on system initialization. Fig. 1 shows the
elationships among these components. The most important is of course
he central decision authority of the system, represented by the ReTiF
aemon: this component is in charge of coordinating all interactions
mong applications and scheduling plugins loaded by the daemon itself.
he ReTiF Library controls how each application can send requests to

the daemon using the API described in Section 3.2; each request will
then be forwarded to the daemon via a POSIX-compliant Inter Process
Communication (IPC) mechanism, namely a UNIX socket connection.
Fig. 2 depicts the typical sequence of interactions between the user-
process and the various components of the ReTiF , in response to a
rtf_spec_create request.

Each dynamically loaded plugin represents one or more scheduling
policies, allowing the framework itself to be completely agnostic with
respect to both the scheduling model associated with each algorithm
and the underlying implementation of the algorithm. In general, each
plugin is supposed to analyze the current task set and check whether
accepting the incoming request (which can ask to either include a
new task or change the scheduling parameters of an already accepted
request). Plugins are free to implement any admission criterion: accep-
tance can depend only on the presence/absence of certain scheduling
parameters or on complete schedulability analysis of the resulting
system condition. If at least one plugin accepts the incoming change,
the request is successful and the priority which best fits the request
criteria will be assigned in charge for the task. This choice is made
taking into account a priority list that can be configured by system
administrators that defines a total ordering among loaded plugins.

3.2. ReTiF LibraryAPI

The ReTiF Library implements a well-defined API that applications
can use to leverage the real-time capabilities of the underlying OS
through the ReTiF framework. A description of the main functions
exposed by the library is included in Table 2. In addition to those
functions, the library provides a set of functions useful to interrogate
the daemon and to implement a periodic task in C.

Each application must connect to the daemon using the
rtf_connect function exposed by the ReTiF Library before submitting
the first request. Then the connection is kept open for further requests.

The library provides an opaque data type called rtf_params that
applications will fill with the scheduling parameters that they want to
include in a new request using the functions described in Table 3. Once
done filling the rtf_params object with the declared parameters, a
new task admission request can be submitted to the ReTiF Daemon by
executing

r t f _ r e s u l t _ t r e s u l t = r t f _ s p e c _ c r e a t e ( spec _p t r , params_ptr ) ;

where spec_ptr is a pointer to a rtf_spec object, which is an opaque
type that represents a real-time task specification, and params_ptr

oints to the just-filled parameters object.
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Fig. 1. Architectural overview of the framework and interaction scheme among main framework components.
Table 2
API exposed to real-time applications by the ReTiF Library.

Function Description

rtf_connect Establishes a connection to the ReTiF Daemon using Unix
domain sockets.

rtf_spec_create Creates a new task specification, specifying its parameters
and requesting the ReTiF Daemon for its acceptance into the
active task set.

rtf_spec_change Requests a new task admission test using new parameters for
an existing task; in case of failure, the task maintains its old
parameters.

rtf_spec_release Releases a task specification, freeing its resources and
detaching the attached process/thread, if any.

rtf_spec_attach Attaches a POSIX process/thread id to an accepted task
specification.

rtf_spec_detach Detaches the POSIX process/thread assigned to a task
specification; from this point onward, the specified
process/thread no longer runs with real-time priority and the
same task specification can be re-assigned to another
process/thread.
Table 3
Parameters that can be declared in each task specification. Getters and setters are used to operate on
rtf_params opaque data structures.

Parameter Symbol Unit Getter/Setter

Period 𝑇 μs rtf_params_get_period
rtf_params_set_period

Runtime 𝑄 μs rtf_params_get_runtime
rtf_params_set_runtime

Desired Runtime 𝑄𝑑 μs rtf_params_get_des_runtime
rtf_params_set_des_runtime

Relative Deadline 𝐷 μs rtf_params_get_deadline
rtf_params_set_deadline

Priority 𝑃 – rtf_params_get_priority
rtf_params_set_priority

Desired Scheduling Plugin – rtf_params_set_scheduler
rtf_params_get_scheduler

Ignore Admission Test – rtf_params_ignore_admission
6
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Fig. 2. Sequence diagram of a typical rtf_spec_create request from a user process. For simplicity, the scheme does not depict failing requests due to communication errors
(timeout) between the application library and the daemon and omits checks performed to test compliance with the configured access control model.
The result of this function can be either RTF_OK on success,
RTF_SCHEDULER_FAIL if is not possible to guarantee provided param-
eters or RTF_ACL_FAIL if the given request cannot be authorized. If a
desired runtime 𝑄𝑑 was supplied with the parameters in the request,
the application can query the daemon by calling

acc_runtime = r t f _ s p e c _ g e t _ a c c ep t ed _ run t ime ( spec _p t r ) ;

In case of failure, the request can be repeated after changing some of
the parameters or waiting for the system to get into a different working
condition. Accepted specifications can later change their parameters
using the rtf_spec_change function, which responds in the same way
as the rtf_spec_create does.

The list of mandatory/optional parameters is entirely dependent on
the list of plugins loaded at runtime by the daemon and to the policy
that applies to the current user of the application (see Section 4). Usu-
ally, the choice of the best plugin that will be selected to handle a task
is made inspecting the list of supplied parameters and the limitations
in the access control policy. However, applications can indicate when
a specific plugin shall be used to schedule a specific task. In that case,
only the requested plugin will be interrogated for task admission.

Each accepted task specification can be associated with an execution
flow using the rtf_spec_attach call. On successful completion of this
call, the user application is ensured that the process or thread identified
7

by the supplied ID will be scheduled according to the accepted schedul-
ing parameters, hence running as a real-time task. To accomplish this
goal, the daemon will forward the attached request to the previously
selected plugin for that task, which will interact with the underlying OS
and set the scheduling policy of the given process/thread accordingly.

Listing 1 shows the body of a sample process that uses the ReTiF
Library API to set its own scheduling parameters and run as a periodic
task. The code shows also how some utility functions provided by the
library to ease the implementation of periodic tasks on POSIX systems,
when a period parameter is declared by the application. In particular,
the rtf_task_start call marks the beginning of the first period of
execution for the real-time task, while the rtf_task_wait_period
call can be repeatedly invoked to suspend task execution waiting for
the next activation point.

3.3. ReTiF Daemon

The ReTiF Daemon is the central component in charge of managing
all user requests and forwarding them in an orderly fashion to each
plugin. It also implements the security mechanisms described in Sec-
tion 4 by inspecting each request and taking the required actions in
order to meet the access control specification provided by the system
administrator. Notice that the ReTiF Daemon is OS agnostic and as such
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Listing 1: Body of a real-time process that uses the framework.

1 /* Task representation */
2 struct rtf_spec s = RTF_SPEC_INIT;
3
4 /* Task parameters */
5 struct rtf_params p = RTF_PARAM_INIT;
6
7 /* Connect to the daemon via a UNIX socket */
8 if (rtf_connect() == RTF_CONNECTION_ERR)
9 return; /* Unable to connect to the daemon. */

10
11 /* Set task parameters */
12 rtf_param_set_period(&p, T_PERIOD);
13 rtf_param_set_runtime(&p, T_RUNTIME);
14 rtf_param_set_des_runtime(&p, T_DES_RUNTIME);
15 rtf_param_set_deadline(&p, T_DEADLINE);
16
17 /* Test for admission */
18 int res = rtf_spec_create(&s, &p);
19
20 if (res == RTF_SCHEDULE_FAIL)
21 return; /* Admission failed, we can retry with different parameters */
22 else if (res == RTF_ACL_FAIL)
23 return; /* ACL check failed, not authorized */
24 else if (res == RTF_CONNECTION_ERR)
25 return; /* Communication failed */
26
27 /* res = RTF_OK */
28
29 /* On success we attach an execution flow to the task specification */
30 rtf_spec_attach(&s, getpid());
31
32 /* Signals that a task begins its execution */
33 rtf_task_start(&s);
34
35 while(!computation_ended()) {
36 /* Task runs mandatory actions */
37 mandatory_computation();
38
39 /* Enabling optional computation depending on the accepted runtime */
40 if (rtf_spec_get_accepted_runtime(&s) > T_RUNTIME)
41 optional_computation();
42
43 /* Suspend execution waiting for the next period */
44 rtf_task_wait_period(&s);
45 }
46
47 /* Cleanup */
48 rtf_spec_release(&s);
it does not interact with the underlying OS, except for the POSIX-
compliant mechanisms used for communication with the ReTiF Library
and security checks.

It is instead the role of each plugin to implement a scheduling policy
on top of the features exposed by the underlying OS. For this reason,
some plugins may be compatible with multiple systems, while others
may require a specific OS or even a certain OS module to be loaded on
the target machine.

The list of all the plugins that shall be loaded by the daemon during
its initialization is provided by the system administrator via a simple
configuration file: the file lists all the names of the .so files to be
oaded, each associated with a custom name, a range of POSIX priorities
hat can be used by the plugin and the CPU cores managed by the
8

lugin (see Section 3.5). The custom name associated with each line
is used to load each plugin under different logical names, each with
a different access control policy associated. More details about this
mechanism are provided in Section 4.

Each plugin must implement the API illustrated in Section 3.4.
Those functions are called by the daemon to interrogate each plugin
upon receiving a new request from the library, for example when a
new task specification is declared. Each plugin analyzes the parameters
associated with each request and responds whether it is capable to sat-
isfy those parameters entirely (RTF_OK), it can satisfy the request even
if some recommended parameters are missing (RTF_PARTIAL), or it
cannot satisfy the request at all (RTF_NO), either because some manda-
tory parameters are missing or because some necessary admission test
resulted in a failure.
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For each request, the daemon collects the responses of each plugin
and selects the one with the highest POSIX priority (specified by the
system administration via the configuration file, see Section 3.5) that
replied RTF_OK; if no plugin is found using this criterion, the daemon

ill proceed selecting the one with the highest priority that replied
TF_PARTIAL. If all plugins replied RTF_NO, the request is denied
nd no changes to current system configuration is applied. Finally, a
esponse is sent back to the requesting application.

.4. ReTiF Plugins API

Each plugin implements a single real-time scheduling policy (which
ay correspond to a specific real-time scheduling algorithm or multiple

nes, depending on the plugin implementation), which will leverage
he real-time functionality exposed by the underlying OS to schedule
eal-time tasks. To do so, each plugin must implement the functions
escribed in Table 4, which regulate the interactions between the
aemon and the plugin itself.

In particular, each plugin should implement the admission test for
ach request in the two functions rtf_plg_accept and
tf_plg_change. This test, if present, should either be based on
he simple check of the supplied parameters (e.g. checking that all
andatory parameters are present) or it can perform a necessary

chedulability test that takes into account the current condition of the
ystem.

If a plugin is selected to schedule a task after a successful request,
he daemon will signal the selected plugin using the
tf_plg_schedule function. At that point, if the specification is
lready associated with an existing execution flow, the plugin proceeds
o assign the actual real-time scheduling parameters to it. If no thread
s associated with the assigned task specification, this operation is
elayed until the daemon invokes rtf_plg_attach with the same task
pecification. The selected parameters will be in effect until either the
equest is assigned to another plugin after a successful change of its
arameters or it is removed from the task set by the client.

Each plugin is implemented as a dynamic-link library that imple-
ents at least the set of functions shown in Table 4 and it is distributed

s a .so file that will be loaded by the ReTiF Daemon during system ini-
tialization phase. While each plugin operates at user-space level, some
of them may require certain features provided only by certain OSes or
by specific kernel modules. This design choice allows us to disentan-
gle the ReTiF Daemon from the underlying OS kernel implementation
as much as possible, relegating all OS-specific code to dynamically
loaded plugins. For example, among the plugins described in Section 5,
the EDF plugin is Linux specific—it relies on SCHED_DEADLINE—

hile the others use standard POSIX schedulers (like SCHED_FIFO or
CHED_RR) and real-time priorities. In case a specific kernel module

s needed, the plugin can load it during its initialization phase. If some
lugin detects that some mandatory features of the underlying kernel
re missing, it can abort the whole initialization of the system and an
rror is returned to the user; the system administrator shall then either
hange the daemon configuration file or check that the requirements
f each selected plugin can be met before starting it again.

.5. ReTiF Daemon Configuration

The daemon reads a configuration file on startup to determine the
ist of plugins that shall be loaded during startup. The format of this
ile is similar to the one shown in Listing 2: each line specifies a
ame for the plugin to be loaded, the .so file containing the plugin
mplementation, a range of POSIX real-time priorities associated with
he plugin, and the list of CPUs that the plugin can use to schedule
asks assigned to it.5 Each plugin file may be loaded multiple times

5 It must be noted however that task allocation to CPUs depends on the
mplementation of each plugin.
9

under different name and parameters: this is particularly useful to
specify different access control policies for different instances of the
same plugin, as described in Section 4.

When dispatching client requests to the plugins, the ReTiF Daemon
will assign each plugin a priority based on the order in which they are
specified in the configuration file.

4. Access control model

On embedded or dedicated real-time systems, typical applications
run under strict timing requirements, and, often, their timing behavior
is entirely under control of the system designer. Therefore, it is com-
monplace to run these applications with a high privilege level on the
OS. On the other hand, this is not the case for general-purpose systems.
Indeed, on GPOSes users may have the ability to install custom appli-
cations or libraries and run them at will, albeit with limited privileges.
Using an expressive access control model, system designers can regain
control of the available resources on general purpose environments.

In this section, we present a novel access-control model developed
for ReTiF . The purpose of this model is to provide system designers
with proper tools to regulate access to the real-time features available
through the framework, which is especially useful when the host is
shared by multiple applications or even multiple users. The interactions
with the framework are regulated, at first, through the normal users/-
groups assignment in the OS, and the permissions associated to access
the daemon IPC entry point. However, without a proper access-control
mechanism, unprivileged users might leverage the framework to take
control of more resources than they should, sending a simple request
to the ReTiF Daemon.

4.1. Security requirements for the framework

The access control model that we identified for ReTiF should satisfy
at least the following requirements:

1. Explicit consent: The framework shall expose access for un-
privileged users to the kernel real-time scheduling features after
an explicit grant from the system administrator. Access to these
resources should be regulated by identifying the individual users
or groups that can access these features altogether on daemon
start-up time.

2. Parameter bounds: System administrators shall be able to spec-
ify appropriate user-specific bounds for each parameter that may
be included in a request for the framework; this feature can
be used to ensure that no user may over-allocate resources and
consequently prevent others to access those resources.

3. Ownership control: Requests sent by a specific process should
not target a task that does not belong to the same user (ex-
cept for requests made by the system administrator who can
change scheduling parameters without restrictions); this applies
in particular to requests for attaching/detaching threads and for
changing or releasing accepted scheduling parameters.

4. Rules administration: Administration of the access-control con-
figuration should be allowed only to the system administrator.

In the following, we illustrate the security model that we devised
and show how this model can effectively protect against unintended or
malicious uses of the proposed framework.

4.2. Access control specification and model

Here we identify the set of rules that characterize our access control
model, in order to satisfy the aforementioned requirements. System
designers can enforce certain policies by specifying a subset of these
rules in a configuration file (see Section 4.4), which is parsed and

interpreted by the ReTiF Daemon during system initialization.
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Table 4
Main functions belonging to the ReTiF Plugins API. Each of these functions is invoked by the ReTiF Daemon
to interact with each scheduling plugin.

Function Description

rtf_plg_accept The plugin is inquired to perform the admission test for a new task
using supplied parameters. Plugins may refuse to schedule tasks if
an admission test fails or if the given specification misses key
parameters to generate a feasible schedule.

rtf_plg_change A new admission test for an already accepted task is performed
using a new set of parameters.

rtf_plg_schedule A task previously accepted (fully or partially) by the current plugin
is assigned to it. From this point onward, the plugin is the manager
of the task scheduling parameters.

rtf_plg_release The specified task is no longer assigned to the current plugin. It
may have left the task set or it may have been moved to another
plugin after a change request.

rtf_plg_attach Instructs the plugin to set the scheduling parameters of the given
process/thread to match the corresponding task specification (which
must be managed by the same plugin).

rtf_plg_detach Instructs the plugin to demote the given process/thread to non
real-time scheduling and cancel the association between the
process/thread and its task specification.
Listing 2: Example of an ReTiF Daemon configuration file.

1 # Name Plugin Priority Cores
2 EDF EDF.so 100-100 0
3 RM1 RM.so 50-99 1,2
4 RR RR.so 1-50 1,2
5 RM2 RM.so 1-99 3,4
6 FP FP.so 1-99 5-7
Each rule in our model may target the entirety of the system, a
ingle user, a group of users, or any entity that may use a specific
lugin. In what follows, we will refer to a domain 𝛥 to identify the

owner of the application that originates a scheduling request to the
framework. In general, a domain can correspond to the global domain,
which includes any application on the system, a user, or a group. To
identify each instance of a plugin loaded in the system 𝛷, for which
multiple instances may be loaded at the same time, the name supplied
as first parameter in the ReTiF Daemon configuration file will be used
(see Section 3.5).

Given a rule 𝑅𝑖, we identify the subject 𝜎𝑖 of that rule with the pair
(𝛥𝑖, 𝛷𝑖), where 𝛥𝑖 is a domain and 𝛷𝑖 is an instance of a scheduling
lugin. If the latter is omitted, then the rule applies to any request
riginated from the domain. We also identify the target of each rule
𝑖 as a pair (𝐿𝑖, 𝑉𝑖), where 𝐿𝑖 is an access control property and 𝑉𝑖 is the

corresponding value.
Each access control property may impose a limit to the possible

values that can be supplied for a parameter in the scheduling request
or it may refer to aggregate values kept by the ReTiF Daemon as more
resources are allocated for each real-time task. Each aggregate value is
kept with respect to the corresponding subject 𝜎𝑖. The access control
properties defined to enable access to the features exposed by the
framework are the following:

i. Maximum aggregate utilization 𝑈𝑚𝑎𝑥
𝑖 limits the maximum to-

tal utilization that may be requested for all tasks matching a
given subject 𝜎𝑖 (i.e., a pair of domain and plugin). If not limited,
any subject could potentially seize all available resources, leav-
ing other subjects on the same system unable to run their own
applications. For the definition of the utilization of each task, see
Section 5.1.

ii. Maximum runtime 𝑄𝑚𝑎𝑥
𝑖 limits the maximum runtime that can

be assigned to each task. This rule prevents any subject from
running high-priority applications that introduce long starva-
tion periods on the system, preempting low-priority applications
from running for extended periods of time.
10
iii. Maximum period 𝑇 𝑚𝑎𝑥
𝑖 limits the maximum period that can

be specified for each task. Long periods enable applications
to access longer runtimes even while maintaining low system
utilization. Hence this rule, combined with the limit on the
maximum runtime, is essential to avoid long starvation periods
in the system.

iv. Minimum period 𝑇 𝑚𝑖𝑛
𝑖 limits the minimum period that can be

specified for each task. Running tasks with very small activation
periods would introduce a lot of overhead on the system, which
has to deal with many task activations. Some plugins for soft
real-time systems may also consider scheduling and other system
overheads negligible; introducing lots of overhead would break
this assumption.

v. Minimum deadline 𝐷𝑚𝑖𝑛
𝑖 limits the minimum deadline that can

be specified for each task. Specifying very small relative dead-
lines is typically equivalent to indicating that a task has a very
high priority (for deadline-based scheduling algorithms, like
EDF). Tasks like this prevent tasks declaring longer deadlines
from being accepted into the system if not kept in check.

vi. Maximum deadline 𝐷𝑚𝑎𝑥
𝑖 limits the maximum deadline that

can be specified for each task. This limit has been added for
completeness.

vii. Maximum priority 𝑃𝑚𝑎𝑥
𝑖 limits the maximum POSIX priority

that can be specified for each task. This can be used to separate
the set of priorities accessible by different subjects, de facto
limiting the degree of privilege each subject may have access
to.

viii. Minimum priority 𝑃𝑚𝑖𝑛
𝑖 limits the minimum POSIX priority that

can be specified for each task. This is to be used in combination
with the previous rule.

ix. Ignore admission test 𝐼𝑖 is a boolean flag that indicates whether
tasks from a subject can use the namesake parameter upon task
creation/parameters change request to skip any admission test.
This permission can be used to grant specific subjects a better
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degree of freedom, and it is intended to be used in special cases
in which certain tasks may be okay with missing some deadlines
from time to time. However, this rule should be handled with
care, as it grants subjects the capability to introduce in an
otherwise schedulable task set tasks that may bring the system
in a non-schedulable condition.

4.3. Enforcing security policies

The framework enforces the model’s application described above
throughout all the different types of requests that might arrive at the
daemon. For each type of request, different actions may take place.

In general, the framework applies a default deny all rule, which
automatically rejects any request if no matching rules are found. By
specifying rules using the mechanism in Section 4.4, system adminis-
trators can specify which actions are allowed (within the given limits).
Note that it is not directly possible to specify an allow-all rule, albeit
using multiple rules virtually any behavior can be enabled.

Upon receiving a new request from a specific user application,
the daemon will identify the rules that may apply to that request by
inspecting the domain corresponding to the application that generated
the request: rules that target the global domain will be applied to
any request; any rule that specifies as domain the effective user or
the effective group associated with the originating application will also
apply. In the implementation of the access control mechanism, the
effective user and effective group are identified by retrieving the effective
user ID (EUID) and the effective group ID (EGID) respectively from the
process ID (PID) of the requesting application.

Rules that do not specify any plugin (i.e. that apply for any plugin)
are checked immediately, while the others are checked only if the
corresponding plugin should be interrogated to handle the current
request. Notice that when multiple rules may apply, all rules should
be satisfied for a request to pass, i.e. the resulting policy is obtained
by intersection between active rules. For the sake of clarity, consider a
situation in which there are two rules: the first one specifies that user 𝑢1
cannot declare task specifications with a total utilization greater than
0.5 (for any plugin), while the second one specifies that the maximum
cumulative utilization available for the plugin 𝑝1 plugin should not be
greater than 0.3 (for any user/group); in that case, tasks of user 𝑢1
assigned to plugin 𝑝1 cannot exceed 0.3 utilization.

To achieve requirement 3, requests originated from a certain appli-
cation will be rejected if they target tasks having a different EUID. With
this mechanism in place, applications cannot attach scheduling rules to
processes or threads associated to other users, which would result in a
vulnerability of the system.

Rules are enforced both upon receiving requests to create new tasks
or when a request to change the parameters of an already accepted
task specification is issued. In the latter case, the limits imposed on the
parameters follow the same rules applied in the creation phase and the
modification is accepted if the resulting condition of the system after
the change satisfies all the active rules for that request.

4.4. Configuring access control policies

To specify the set of rules that shall be enforced by the daemon at
runtime, the system administrator can edit an access control configura-
tion file, which is parsed by the ReTiF Daemon upon initialization, right
after its general configuration file.

Listing 3 shows an example of this access control configuration
file. Its structure resembles a whitelist, with each rule specified on a
separate line, with a syntax inspired to the limits.conf system-wide
configuration file on Linux. The syntax of each rule is composed of four
columns, where the first two columns are used to identify the subject
of the rule 𝜎 and the last two columns specify the target 𝑡.

The Domain field accepts as valid value either a username, a group
name (distinguished from a username using a @ character at the be-
11

ginning), or the wildcard value '- ' , to identify the global domain. The
Table 5
List of access control properties 𝐿 and respective keys used in the access control
configuration file.

Property 𝐿 Symbol Unit or Range Key

Maximum Aggregate Utilization 𝑈𝑚𝑎𝑥 > 0.0 a max_utilization
Maximum Runtime 𝑄𝑚𝑎𝑥 μs max_runtime
Minimum Period 𝑇 𝑚𝑖𝑛 μs min_period
Maximum Period 𝑇 𝑚𝑎𝑥 μs max_period
Minimum Deadline 𝐷𝑚𝑖𝑛 μs min_deadline
Maximum Deadline 𝐷𝑚𝑎𝑥 μs max_deadline
Minimum Priority 𝑃 𝑚𝑖𝑛 [1 .. 100]b min_priority
Maximum Priority 𝑃 𝑚𝑎𝑥 [1 .. 100]b max_priority
Ignore Admission Test 𝐼 true/false ignore_adm_test

aUses floating precision, accepts any value greater than zero, where each unit
corresponds to a fully utilized core (e.g. 1.0 is one fully utilized core, 2.0 two full
cores, etc.).
bActual range depends on the number of priorities supported by the target platform,
as advertised by sched_get_priority_min/max POSIX functions.

Table 6
List of plugins provided with the framework and relative parameters.

Parameter Plugins

EDF RM RR FP

Period 𝑇 ✓ ✓ – –
Runtime 𝑄 ✓ † – –
Desired Runtime 𝑄𝑑 ◦ – – –
Relative Deadline 𝐷 ◦ ◦ – –
Priority 𝑃 – – ✓ ✓

✓ Mandatory.
† Recommended, but not mandatory.
◦ Optional, default value is used if not supplied.
– Unused.

Plugin-name field is either a plugin name, which must correspond to
the name of one of the plugins included in the ReTiF Daemon general
onfiguration file, or the wildcard value '- ' , to specify that the rule
pplies to any plugin. Finally, Table 5 shows the accepted keys for the
roperty field, alongside the unit or range that is used to specify the
orresponding Value field.

5. Implementation and plugins suite

ReTiF implementation reflects the overall architecture described
n Section 3.1. Currently, the implementation of the ReTiF Daemon

partially supports the access control mechanism described in Section 4.
The software is freely available on GitHub, under a GPLv3 license, at:
https://github.com/gabriserra/retif.

This section summarizes the characteristics of a suite of plugins
that we provide alongside the framework to both test the functionality
of our implementation and to provide access to common real-time
features. Table 6 summarizes the task parameters supported by each
plugin included in the suite.

5.1. EDF plugin

This Linux-specific plugin provides an implementation of the EDF
scheduling algorithm, which is well known to be optimum for single
processor systems [39], on top of the SCHED_DEADLINE scheduling
class.

In particular, this implementation provides a fully partitioned ver-
sion of EDF that employs a worst-fit task allocation strategy among the
CPU cores specified via the ReTiF Daemon configuration file.
CHED_DEADLINE is an implementation of EDF that is offered by

he Linux mainline kernel since version 3.14 [40] based on CPU
eservations implemented through a variant of the Constant Bandwidth
erver (CBS) [7]; each task (represented by a single execution flow) is
ssigned its own reservation to be run into, based on its runtime 𝑄 and

period 𝑇 . The scheduler then uses the optional deadline parameter 𝐷 to

https://github.com/gabriserra/retif
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Listing 3: Example of access control configuration file.

1 # Domain Plugin-name Property Value
2 # Limit the aggregate utilization of user1 on EDF to 70%
3 user1 EDF max_utilization 0.7
4 # Limit the CDROM group task period using any plugin to 9 ms
5 @cdrom - max_period 9000
apply the CBS/EDF scheduling strategy among the reservations related
to this scheduling class.

The plugin performs a simple task specification admission test based
on the total utilization registered for each CPU. The utilization of each
task 𝜏𝑖 is defined by the following ratio

𝑈𝑖 =
𝑄𝑖

𝑚𝑖𝑛{𝑇𝑖, 𝐷𝑖}
(1)

Since each task can only be assigned to one core, each new scheduling
request is allocated to the least loaded core. Given a core 𝑘 and the set
f all tasks assigned to that core 𝛤𝑘, the load of the core is identified

by the sum of the tasks’ utilizations belonging to 𝛤𝑘

𝑈𝑘 =
∑

𝜏𝑖∈𝛤𝑘

𝑈𝑖 =
∑

𝜏𝑖∈𝛤𝑘

𝑄𝑖
𝑚𝑖𝑛{𝑇𝑖, 𝐷𝑖}

(2)

Once the CPU is selected, a new task is accepted if the admission
f the new task into the current task set does not lead the system to
n overload condition, that is if the load of the selected core after
he inclusion of the new task is still less than or equal to a threshold
𝑡ℎ𝑟 ≤ 1. This test is a sufficient schedulability test for partitioned
DF [39]; hence, given the least loaded core 𝑘, this plugin accepts a

new task 𝜏𝑗 to be scheduled if the following condition holds true:

𝑈𝑘 +
𝑄𝑗

min{𝑇𝑗 , 𝐷𝑗}
≤ 𝑈 𝑡ℎ𝑟 (3)

f this condition is satisfied, the request is accepted and assigned to the
east loaded core �̄�, otherwise it is rejected.

Notice that 𝑈 𝑡ℎ𝑟 can be customized and also notice that admission
or tasks that declare runtime and period is subject to other checks
o ensure that all access control policies are always met. For these
easons, the current implementation of this plugin disables the in-kernel
ecessary test performed by SCHED_DEADLINE for Global EDF.6 On
ask specification admission, the plugin sets all scheduling parameters
nd CPU affinity of the associated process modifying the CPU affinity
ask using the sched_setaffinity system call.

If a desired runtime 𝑄𝑑
𝑗 is also specified for the task, then the task

s assigned an accepted runtime 𝑄𝑎
𝑗 ∈ [𝑄𝑗 , 𝑄𝑑

𝑗 ] that is the highest value
possible given the current load of the system that does not break the
acceptance condition:

𝑄𝑎
𝑗 = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑄𝑗 , 𝑄

𝑑
𝑗 ), (𝑈

𝑡ℎ𝑟 − 𝑈�̄�) ⋅ 𝑚𝑖𝑛{𝑇𝑗 , 𝐷𝑗}) (4)

Users may also request this plugin to ignore task admission check on
failure: in this condition, tasks accepted in spite of a failing test receive
an accepted runtime always equal to their minimum runtime 𝑄𝑗 .

5.2. RMPlugin

This plugin implements the RM scheduling algorithm, which is
well known to be optimum for single processor systems among FP
scheduling strategies [39]. This particular implementation provides a
fully partitioned version of RM that uses a worst-fit task allocation
strategy on top of the POSIX SCHED_FIFO scheduling policy.

6 Writing −1 to /proc/sys/kernel/sched_rt_runtime_us.
12
As shown in Table 6, the only parameter that is mandatory for this
plugin is the task period 𝑇 . Since tasks may not declare their expected
runtime 𝑄 and still be admitted by this plugin, a proper admission test
based on the schedulability of the system cannot be provided for all
tasks. The strategy that we adopted is to apply a necessary-only single-
CPU FP utilization test for all tasks that declare both their runtime and
period parameters. In the future, this plugin might have an option to
enable a sufficient test for RM.

Upon receiving a new request that includes both parameters, the
least loaded core 𝑘 is selected as the potential core to schedule the new
task, using a worst-fit allocation strategy. Given the set of tasks assigned
to that core 𝛤𝑘, this plugin assigns each task a priority that is inversely
proportional to their period:

𝑃𝑖 ∝ 1∕𝑇𝑖 ∀ 𝑖 ∈ 𝛤𝑘 (5)

The calculated priority for each task 𝑃𝑖, which is within the range
of POSIX priorities assigned to this plugin via the ReTiF Daemon con-
figuration file, is then used to schedule tasks using SCHED_FIFO.

5.3. RR and FP Plugins

The Round Robin (RR) and FP plugins serve as wrappers, exposing
underlying POSIX functionality to applications that rely on ReTiF to ac-
cess real-time features. They respectively provide access to SCHED_RR
and SCHED_FIFO scheduling policies and as such their only required
parameter is the desired priority 𝑃 .

Since no proper schedulability analysis can be performed with only
that parameter, neither plugin performs any check upon receiving
a new request, checking only the presence/absence of the priority
parameter. Both plugins apply a worst-fit task allocation strategy, in
this case resulting in each new task to be assigned to the CPU core
with the minimum number of assigned tasks.

The priority requested via the ReTiF Library API may differ from the
one actually used by either of these plugins to schedule a task; this hap-
pens when the range of priorities that each plugin may select (specified
via the ReTiF Daemon configuration file) differs from the normal range
of POSIX priorities. In this situation, each plugin attempts to maintain
the ordering of the distinct priorities that have been requested for each
real-time task when assigning actual POSIX priorities.

Given a core 𝑘 and the set of all distinct priorities requested for
that core 𝛱𝑘, the resulting ordering among tasks once actual POSIX
priorities have been selected reflects the one specified in input (i.e. total
ordering among tasks is maintained) if

∣ 𝛱𝑘 ∣ ≤ 𝑅𝑘 (6)

where 𝑅𝑘 is the number of distinct priorities available on CPU 𝑘 for
that plugin.

When this condition is not satisfied (i.e. if the destination range
is smaller than the number of distinct priorities requested on that
core), some tasks may receive the same priority even if they originally
requested two distinct ones. In future versions of this plugin, we might
introduce an option that forces reject of the request in such a case.

6. Performance evaluation

This section presents results of our experiments involving ReTiF ,
with the goal of measuring the overheads that it introduces on real-time

applications.
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Table 7
Characteristics of the two reference platforms used in experiments.

Reference machine Intel ARM

Server model Dell PowerEdge R630 Gigabyte R150-T62
CPUs Two Intel® Xeon E5-2640 v4 Two Marvell® ThunderX® CN8890
Total number of cores 20 96
RAM 64GB 64GB
Distribution Ubuntu 18.04.5 LTS Ubuntu 20.04.2 LTS
Kernel Version 4.15.0 5.8.0
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Overheads introduced by ReTiF typically depend on two factors that
sum up for each operation requested by the application. The first one
is the communication cost between the real-time application and the
ReTiF Daemon through the IPC mechanism used (Unix sockets); this cost
is the same for all kinds of requests and is independent from the plugin
selected to serve it. The second cost depends on the kind of request
performed and on the implementation of each plugin loaded by the
ReTiF Daemon.

Note that applications have to pay these overheads only when
directly sending requests to the ReTiF Daemon, to declare new tasks
or to request changes to the accepted ones. The cost of scheduling
these real-time applications once accepted is no different than the
one of running them directly with the underlying OS, because that is
what each plugin does: configure the system scheduler to manage each
application. Hence, no overheads are to be expected in the critical loops
of real-time applications with respect to implementations not leveraging
ReTiF .

6.1. Experiments setup

We performed experiments on two reference server platforms, an
Intel and an ARM-based one, varying different parameters and requests
to check how these changes affect the cost of each request in ReTiF ’s
user API. Table 7 summarizes the characteristics of each reference
platform. During experiments, hyperthreading, CPU frequency scaling,
and Turbo Boost were disabled to maximize reproducibility of the
results, fixing CPU clock speed of both reference platforms to 2GHz.
For these tests, we did not provide any ACL rule to the framework, de
facto disabling access control mechanisms in the ReTiF Daemon.

The application used during these benchmark is a single-threaded
rocess that performs multiple requests to the ReTiF Daemon, each
equest adding one new task to the active taskset. The application
nd the ReTiF Daemon are configured to run with highest POSIX real-
ime priority (99) pinned on separate cores, to avoid interferences from
ther applications. Finally, on both platforms we used the Time Stamp
ounter (TSC) register to measure time differences to maximize the
recision of our measurements.

Tests were executed by configuring the ReTiF Daemon to load only
ne plugin at a time, using either EDF, RM, or RR/FP plugins (the last
wo share the same underlying implementation). As shown in Fig. 2,
he ReTiF Daemon iterates through all the plugins configured when
andling rtf_spec_create or rtf_spec_change requests; in scenar-
os in which multiple instances of plugins are configured, expected
verheads should be higher. For each plugin, we varied the number
f CPU cores managed by the plugin from 1 to 20 and the number of
asks already present in the taskset before starting a new request from 0
o 1024. Tasksets are randomly generated (including task parameters)
nd for each possible configuration 500 different experiment runs were
erformed, to ensure reproducibility of obtained results.

Notice that in more realistic use case scenarios there would be multi-
le applications performing requests concurrently to the ReTiF Daemon,
hich is implemented for simplicity as a single process. This means

hat some applications may experience higher overheads depending
n the size of the requests queue of the ReTiF Daemon (which in our
eference scenario is always empty whenever a new request arrives).
ll operations handled by the ReTiF Daemon are typically performed
13

w

utside critical loops (since no scheduling decision is taken by the ReTiF
aemon itself or any of its plugins), and most of them are performed only
uring initialization (to declare task specifications and attach POSIX
hreads/processes to them) or cleanup phases (to release allocated
esources). Only one request (rtf_spec_change) does not fit in any
f these two categories. Real-time tasks that plan to request repeatedly
hanges to their scheduling parameters should be prepared to handle
he overhead of this operation if included in their critical loops.

.2. Declaring new tasks

We first performed a number of experiments involving the
tf_spec_create or rtf_spec_change requests, which declares a
ew task specification. The main goal of this test is to measure how
uch time it takes from an application point of view to perform

he task admission test, depending on the system configuration and
lugin selected. To do so, we measure the time needed to perform
rtf_spec_create request when varying the system configuration

nd number of tasks in the active taskset as described above. The
enchmarking application performs only task specification declara-
ions, without attaching any actual POSIX process/thread to accepted
equests. For rtf_spec_change, the cost is very similar and as such
e did not include its corresponding results.

Experimental results for both reference platforms are shown in
igs. 3 and 4, which show the time needed to perform each request
epending on system configuration. Results vary depending on the
lugin implementation.

For the EDF plugin, the time needed to perform each request does
ot vary with respect to the number of CPUs or the number of tasks
lready accepted, because the admission test is a simple test based
n the total utilization accounted on each CPU, which is maintained
cross requests. The cost of this call is barely higher than the com-
unication overhead between the benchmarking application and the
eTiF Daemon process via the Unix socket, which we measured to be on
verage around 12 and 50 μs on the Intel and ARM reference platform
espectively in our testing configuration.

For the other plugins, results show that the time needed to respond
ach request increases linearly with the number of tasks present in
he taskset and with the inverse of the number of CPUs available for
he plugin to select from. The linear dependency with the number of
asks in the taskset is easily explained: both plugins try to maintain

partial ordering among tasks based on their priority, and in our
mplementations this is done by inserting tasks in an ordered linked
ist. While the implementations of RM and RR/FP plugins are very
imilar, the latter leverages more often an optimization that reduces
he time needed to assign a priority to a task when it requests the same
riority of another task already present in the taskset; this optimization
s triggered more often for the latter plugin, reducing the average
ime needed to resolve these requests. The linear relationship with the
nverse of the CPUs is also easily explained: when there are more CPUs
o choose from, the size of each linked list maintained by the plugins
s shorter, because tasks are distributed to the various CPUs using a

orst-fit allocation strategy.
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Fig. 3. rtf_spec_create latency depending on system configuration on the
reference platform at Intel platform 2GHz.

Fig. 4. rtf_spec_create latency depending on system configuration on the
ARM reference platform at 2GHz.
p
s
f
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6.3. Configuring scheduling parameters

In this experiment, we compare the cost of performing a
rtf_spec_attach request with respect to calling directly
sched_setscheduler from the real-time application. The two calls
are very similar, since in both cases the result is that the POSIX
thread/process given as argument will change its scheduling policy
to the selected one with the specified priority. In fact, all plugins
14

C

described in Section 5 use internally the POSIX sched_setscheduler
to accomplish this goal.

Using ReTiF , there is the additional cost due to communication
overhead and some checks performed by the ReTiF Daemon and the
lugin that has been selected to manage the requesting task. Fig. 5
hows the overheads measured on our two reference platforms for both
unctions. Implementation of the rtf_spec_attach does not depend
n the number of tasks included in the system nor on the number of
PUs managed by each plugin, hence for simplicity we show only the
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Fig. 5. Comparison between the latencies of rtf_spec_attach and sched_setscheduler on the two reference platforms at 2GHz.
distribution of measured values. All plugins in Section 5 implement this
operation in a similar fashion and thus there is virtually no difference in
cost depending on which plugin is managing the request. As expected,
calling rtf_spec_attach takes considerably more time than perform-
ing the direct system call; we deem this an acceptable cost to exploit the
functions provided by ReTiF , like unprivileged and controlled access to
real-time scheduling features of the underlying platform.

7. Known limitations

ReTiF effectively provides safe access to real-time scheduling fea-
tures for unprivileged tasks on a set of OSes and platforms. It is not per-
fect though and some aspects of its architectural design and implemen-
tation lead to some limitations when it comes to cross-platform compat-
ibility. This section illustrates all known limitations of the framework,
how we plan to overcome them and what kind of impact they have on
the applications that rely on ReTiF .

7.1. POSIX Compliance

We emphasized multiple times that the presented framework is
intended to be used on generic (mostly) POSIX-compliant OSes. This
includes not only Linux, but other OSes such as macOS-X, FreeBSD7,
Solaris, or others. That said, some aspects of the POSIX specification
for real-time features of compliant OSes impose some limits on the
effectiveness of ReTiF .

As discussed in Section 3.4, the core design principle of the frame-
work distinguishes between its core components (represented by the
ReTiF Daemon and its corresponding shared library), and the scheduling
plugins. Core components are implemented using only portable POSIX
features, while plugins encompass all OS-specific and non-portable
features of the system, interacting directly with the user-space API
of available schedulers. Among the plugins presented in Section 5,
most of them are portable components, since they provide access to
POSIX-defined schedulers such as SCHED_FIFO and SCHED_RR; in
this sense, only the EDF plugin is Linux-specific, since it leverages
SCHED_DEADLINE.

That said, there is one key element of the POSIX specification
that critically changes the behavior of each of the plugins when run-
ning on different OSes. Each plugin implementation leverages the
sched_setscheduler system call, which is used to assign scheduler

7 For more info see https://people.freebsd.org/~schweikh/posix-utilities.
html
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and scheduling parameters of real-time tasks once an execution flow
is attached to a task specification. Per original POSIX specification,
this call accepts a PID and as such it can be used only to change
the parameters of a whole process8. On the other hand, Linux is not
entirely compliant with this specification and it accepts a thread ID
(TID) as first parameter9, easily obtainable using the gettid system
call.10 Leveraging this feature, ReTiF plugins can set the scheduling
properties of individual threads, rather than processes, of unprivileged
applications on Linux (and in general in systems which provide a
similar behavior).

Strictly POSIX systems however do not have this capability. Even
systems which implement POSIX threads using a 1:1 threading model
like Linux (i.e. each thread corresponds to a single task_struct
from the kernel point of view) may not expose TIDs to user-space
and may not accept them as parameters for sched_setscheduler,
since neither of these features are part of the POSIX specification. To
set the scheduling properties of a single thread, POSIX provides the
pthread_setschedparam function as the only option, which can only
be called from the context of the process which the thread belongs to11.

Per ReTiF design, an external privileged process (the daemon) is the
only one capable of interacting with OS schedulers. In this condition,
if an individual POSIX thread must be scheduled, there must be a way
for an external process to access its thread ID and to use it to change its
scheduling parameters. If that is not the case, then for that particular
OS only scheduling properties for entire processes can be managed by
ReTiF , while real-time threads cannot be used. For example, FreeBSD,
which provides TIDs (albeit with a different API call), does not allow
them as argument of sched_setscheduler, and as such only real-time
process scheduling can be achieved with ReTiF on FreeBSD12.

We understand that this represents a major limitation to the porta-
bility of applications relying on ReTiF to access real-time features,
which should stick with multi-processes rather than multi-threading
if cross-OS portability is desired, and we plan to investigate in the

8 For more info see https://pubs.opengroup.org/onlinepubs/9699919799/
functions/sched_setscheduler.html

9 For more info see https://man7.org/linux/man-pages/man2/sched_
setscheduler.2.html

10 In the case a PID is used, on Linux only the parameters of the main
application thread are changed, and not the parameters of the whole process,
since PID and TID of the main thread coincide.

11 For more info see https://pubs.opengroup.org/onlinepubs/9699919799/
functions/pthread_setschedparam.html

12 For more info see https://www.freebsd.org/cgi/man.cgi?query=sched_
setscheduler&sektion=2&manpath=FreeBSD+13.0-current

https://people.freebsd.org/~schweikh/posix-utilities.html
https://people.freebsd.org/~schweikh/posix-utilities.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/sched_setscheduler.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/sched_setscheduler.html
https://man7.org/linux/man-pages/man2/sched_setscheduler.2.html
https://man7.org/linux/man-pages/man2/sched_setscheduler.2.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_setschedparam.html
https://pubs.opengroup.org/onlinepubs/9699919799/functions/pthread_setschedparam.html
https://www.freebsd.org/cgi/man.cgi?query=sched_setscheduler&sektion=2&manpath=FreeBSD+13.0-current
https://www.freebsd.org/cgi/man.cgi?query=sched_setscheduler&sektion=2&manpath=FreeBSD+13.0-current
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future other techniques to enable unprivileged multi-threaded real-time
scheduling in the future, perhaps with the help of other non-standard
OS schedulers.

7.2. Plugins coexistence

The most straightforward way of configuring a system using ReTiF
is to assign a separate set of CPUs to each plugin that are managed
independently from the others. This way, each plugin can maintain
a separate accounting of the resources already in use in the system
without the need for caring about what other plugins may have already
assigned. This imposes a limitation on the flexibility of the managed
systems; while there is no rule in place to prevent allocating the same
CPU cores (or even partially overlapping subsets of the CPUs on the
system) to multiple plugins, the resulting behavior may not provide
the desired level of guarantees with respect to hard partitioning of
CPUs to plugins. For example, the RR/FP plugins do not implement any
check on the tasks they manage and as such the coexistence of these
plugins with others that do implement some checks may compromise
the guarantees provided to user applications if not configured wisely.

We plan to investigate these situations in the future to devise some
mechanism that will either prevent these situations or mitigate their
effects to some degree. For now, while we do not explicitly forbid the
overlap of CPU sets for different plugins, we strongly advise against it.
Indeed, the daemon issues a warning if it detects partially overlapping
CPU sets of the configured plugins on start.

7.3. Partitioned scheduling only

As of now, ReTiF supports partitioned scheduling algorithms only
via the implementations of the plugins described in Section 5. Support
for other task allocation strategies like global, clustered, or even semi-
partitioned scheduling may be introduced in the future with additional
plugins. If each plugin is assigned a non-overlapping set of CPUs,
multiple scheduling domains may leverage not only different schedul-
ing algorithms, but also different task allocation strategies to CPUs,
provided that the underlying OS implements these allocation strategies
in one of its real-time schedulers in the first place. For example, the
Linux SCHED_DEADLINE scheduler (leveraged by our EDF plugin) im-
plements global scheduling and it can also be configured via cgroups
to operate on non-overlapping scheduling domains independently13. A
future implementation of another EDF-based plugin may leverage these
features to implement global scheduling on a subset of the CPUs on the
system.

7.4. Support for more complex scheduling algorithms and task models

As it is now, ReTiF supports a simplified task model that does not
take into account valuable aspects that characterize complex real-time
systems, e.g., blocking times, task offsets, possible task dependencies,
and others. We plan to introduce support to a broader set of (op-
tional) declarative parameters in future revisions of the framework,
providing plugin developers additional tools to perform more thorough
evaluations of taskset schedulability on task arrival.

In addition, we plan to develop new plugins that may leverage
other frameworks mentioned in Section 2 that operate at a lower
level to provide access to a broader set of schedulers and policies, for
example by supporting LITMUSRT. This way, user-space applications
may leverage our simple and unified API to test their behavior under
different schedulers, even those that are not part of the mainline version
of the operating system kernel.

7.5. Handling transients

ReTiF supports dynamic tasksets in which tasks can dynamically
enter/leave the current taskset at any time. These operations can cause

13 For more info see https://lwn.net/Articles/747088/
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transients in the system that might lead to some missed deadlines if not
properly addressed. For now, no mechanism to prevent these kinds of
transient is implemented yet. In the future, some support for change
protocols should be added to the various plugins for a proper handling
of these transients.

7.6. Virtualization and hierarchical scheduling

Usability of ReTiF in virtualized contexts is very limited. As it is
now, ReTiF assumes that it is running in an OS that has complete
ownership of visible resources (active CPUs, etc.). If the OS hosting
ReTiF runs as a guest under a virtual machine monitor (VMM) or hy-
pervisor, this assumption is correct only if the VMM performs hardware
partitioning, so that virtual CPUs in the guest are mapped exclusively
to dedicated physical CPUs on the host. Otherwise, the ReTiF is not
able to provide the expected guarantees to user applications. These
problems are well known in the field of hierarchical scheduling and in
future releases we may enrich the framework with knowledge of how
vCPUs are scheduled within the host OS (e.g., knowing its supply-bound
function), and apply accordingly an appropriate hierarchical analysis
when admitting new tasks.

8. Conclusions and future work

This work describes the architecture of ReTiF , a newfangled frame-
work designed to improve the accessibility to real-time capabilities of
POSIX compliant OSes. We described the ReTiF design and implemen-
tation, focusing on the aspects that improve accessibility to real-time
features offered by modern GPOSes from user space. Thanks to its
declarative approach, ReTiF greatly simplifies the interface between
ser applications and the underlying OS, providing applications a sim-
le and portable API. We also described how the security mechanisms
mbedded in ReTiF give complete control to system designers over the
esources managed by the framework itself. Finally, we showed the
verheads introduced by this framework.

.1. Future work

We are actively working to continue the development of ReTiF ,
to include further aspects that will improve the usability and robust-
ness of the framework, especially with respect to the timing behavior
of the managed real-time tasks. The current implementation can be
improved in a number of aspects; we showed the most notable of
these in Section 7, where we also mention some directions of future
development of the framework, including tasks allocation strategies
different than partitioned scheduling, the usage of the framework in
virtualized environments, and others. To handle transients due to tasks
dynamically entering or leaving the system, we plan to introduce some
mode-change protocol [41–44] between the ReTiF Daemon and the
loaded plugins to address this potential issue. Besides transients, the use
of TID to identify each real-time task could lead plugins to mistakenly
change the scheduling parameters of unrelated threads if the system
reuses the TIDs of terminated real-time threads over time. In future
extensions, we will consider the possibility to use pidfds14, which have
been added recently in the Linux kernel for cases like this, although the
portability of this feature to other POSIX systems may be problematic.

Furthermore, we plan to include support to a broader set of features
that improve the usability of the framework in certain scenarios. Energy
efficiency is a topic of paramount importance for mobile and embedded
systems. On architectures that support power management techniques
like Dynamic Voltage and Frequency Scaling (DVFS), the computation
time may vary depending on the frequency of the CPUs or even the
type of the CPU core selected to run tasks in heterogeneous computing

14 For more info see https://lwn.net/Articles/794707

https://lwn.net/Articles/747088/
https://lwn.net/Articles/794707
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platforms (e.g. on ARM big.LITTLE or DynamIQ architectures). We plan
to add support for energy awareness to the framework introducing an
optional module that will let applications specify their runtime using a
frequency-independent measurement unit.

Finally, further extensions might enrich the proposed API to ac-
cept additional parameters from user applications—like preferred or
mandatory CPU affinity constraints, blocking times or task offsets—or
to let implement other plugins that make use of more advanced task
admission tests.
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