
Simulating Execution Time and Power Consumption of Real-Time
Tasks on Embedded Platforms

Gabriele Ara
Scuola Superiore Sant’Anna

Pisa, Italy
gabriele.ara@santannapisa.it

Tommaso Cucinotta
Scuola Superiore Sant’Anna

Pisa, Italy
tommaso.cucinotta@santannapisa.it

Agostino Mascitti
Scuola Superiore Sant’Anna

Pisa, Italy
agostino.mascitti@santannapisa.it

ABSTRACT

In this paper, we present PARTSim, an open-source power/thermal-

aware simulator for embedded real-time systems. This tool is a

fork of the well-known RTSim simulator, which can simulate the

timing behavior of a set of real-time tasks with various character-

istics when running on a multi-processor platform in presence of

a number of real-time scheduling policies. PARTSim extends the

functionality of RTSim by introducing support for power-aware

embedded platforms exhibiting frequency scaling and specific ar-

chitectural patterns like the ARM big.LITTLE and DynamIQ ones.

Experimental results that compare simulated data against execu-

tion profiles collected on real platforms show a simulation error

under 10 % for both execution time and power consumption at 90th

percentile when simulating the effects of DVFS.

CCS CONCEPTS

·Computer systems organization✙ Embedded systems; Real-

time system architecture; · Software and its engineering✙ Sched-

uling; Power management; · Hardware✙ Temperature simu-

lation and estimation; Power estimation and optimization;

KEYWORDS

Real-Time Systems, Scheduling, Simulation, DVFS, Heterogeneous

Embedded Systems, ARM big.LITTLE

ACM Reference Format:

Gabriele Ara, Tommaso Cucinotta, and Agostino Mascitti. 2022. Simulating

Execution Time and Power Consumption of Real-Time Tasks on Embedded

Platforms . In Proceedings of ACM SAC Conference (SAC’22). ACM, New

York, NY, USA, Article 4, 10 pages. https://doi.org/10.1145/3477314.

3507030

1 INTRODUCTION

Engineering real-time and distributed systems has always been

a cumbersome task due to the need for software mechanisms to

This work has received funding from the European Commission through the EU H2020
research project AMPERE (A Model-driven development framework for highly Parallel
and EneRgy-Efficient computation supporting multi-criteria optimization) under the
grant agreement no. 871669.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAC’22, April 25 śApril 29, 2022, Brno, Czech Republic

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8713-2/22/04. . . $15.00
https://doi.org/10.1145/3477314.3507030

ensure predictable execution, despite the presence of unpredictable

elements in the underlying hardware, primarily because of the need

for higher and higher performance to support applications with

higher and higher complexity, to fulfill increasingly demanding

requirements by users of real-time systems [23].

However, the last decade has also seen increasing attention ded-

icated to power efficiency, with hardware being enriched with more

and more power management features, resulting in platforms with

high peak computational capabilities and low power consumption

under regular workloads within normal-usage scenarios. One of

the mechanisms that support this model is Dynamic Voltage and

Frequency Scaling (DVFS) [14], often coupled with multiple łdeep-

idlež states of the processor characterized by different trade-offs

between power consumption while idle vs. wake-up latency when

reacting to external events [10]. Additionally, the so-called łturbož

technologies [15] add the capability to opportunistically spike up

the frequencywhenever allowed by the processor’s thermal and cur-

rent absorption conditions as continuously monitored in hardware.

In this context, heterogeneous architectures [13] leverage different

processor types to dedicate to different tasks to reach particularly

energy-efficient operating points for different workloads. Indeed,

heterogeneous single-Instruction Set Architecture (ISA) multi-core

architectures have been introduced, like ARM big.LITTLE, which

now dominate the market smartphones and tablet markets, intro-

ducing the distinction between łbigž and łLITTLEž core islands [12].

The two core types exhibit different trade-offs between computing

speed and power efficiency while maintaining cross-compatibility

by supporting the same ISA. The DynamIQ architecture further

extends this concept with the possibility of even more core islands.

A common practice for soft real-time system development is

the one to disable many hardware capabilities that lead to non-

predictable execution of real-time tasks; however, energy efficiency

requirements are first-class citizens in the design of modern het-

erogeneous computing platforms, leading to the impracticality to

disable energy management features like DVFS altogether [3, 23].

Research on real-time systems very often relies on non-functional

simulators (see section 2), which can simulate the timing and sched-

uling of tasks on a platform, under various conditions, including

worst-case scenarios, to perform experimental comparisons among

the timing properties of various solutions. However, these plat-

forms rarely include energy-awareness features (i.e., DVFS). Even

the ones that do include these features typically rely on simplified

theoretical models that may struggle to reflect a real platform’s

behavior accurately. For example, when modeling DVFS, power

consumption is often assumed to vary according to the square or

cube of the processor frequency, but nowadays, operating system

https://doi.org/10.1145/3477314.3507030
https://doi.org/10.1145/3477314.3507030
https://doi.org/10.1145/3477314.3507030

SAC’22, April 25 śApril 29, 2022, Brno, Czech Republic Gabriele Ara, Tommaso Cucinotta, and Agostino Mascitti

drivers can also change the voltage of the processor when chang-

ing frequency, with a non-negligible impact on these simplified

models. Additionally, (worst-case) execution times of tasks are as-

sumed to vary with the frequency according to simple algebraic

equations, often without distinguishing between CPU-intensive

and data-intensive workloads.

Another aspect that is crucial for accurate simulations of the

behavior of modern embedded platforms, is the one of correct mod-

eling of the thermal properties of such platforms under a variety of

workload and environmental conditions. Many modern CPUs are

affected by excessive heating problems when operating at peak per-

formance conditions for a prolonged amount of time. This means

that these platforms often rely on kernel-level protection mecha-

nisms that kick in when excessive heating might lead to physical

damages of the hardware. These may vary from simple ventilation

activation or speed increase, to temporarily limiting the maximum

frequency of affected CPU(s). These phenomena cannot be ignored

nowadays, with a growing number of embedded platforms deployed

in very different environmental conditions, where it is expected

that these protection mechanisms will be triggered quite often (i.e.,

small form factor or fan-less devices, as typical in smartphones

and tablets). Therefore, it is essential to support the variation of

the CPU(s) temperature over time from a soft real-time perspec-

tive, to enable the emulation of these protection mechanisms, so

to enhance realism in the simulated platform. For example, this

modeling feature is key to effectively experiment with thermal-

aware scheduling logics capable of preventing or controlling the

occurrence of overheating conditions, e.g., as in [22, 24].

Therefore, to improve realism in the validation of real-time sys-

tems research, it has become increasingly important to have open

real-time simulation frameworks with proper support for various

power management and thermal management features typical of

embedded platforms, which is the subject of the present paper.

1.1 Contributions

This paper presents PARTSim, a novel open-source tool for simulat-

ing embedded real-time systems running on multi-processor power-

aware platforms, realized as an extension of the well-known RTSim

open-source simulator [20]. The new tool enables users to conve-

niently simulate the timing behavior of real-time software running

on multi-core embedded platforms with power-aware features like

DVFS, aiming at an accurate simulation of power consumption and

temperature of the various cores throughout the simulations. While

extensions to RTSim supporting the simulation of power consump-

tion and task speed-up due to DVFS already exist [2], this paper

describes a more generic power/timing simulation approach, intro-

ducing a modular mechanism allowing for model-based, as well

as table-based emulation of the impact of DVFS on task speed-up,

power consumption and thermal behavior of the platform. For this

purpose, we developed another open-source tool, PARTProf, that

collects various metrics relative to the execution of real-time tasks

on embedded platforms running Linux and generates a suitable

model that PARTSim will use to simulate each platform accurately.

Simulator internals related to big.LITTLE have been generalized

to support arbitrary sets of CPU cores per CPU island, generic Dy-

namIQ architectures, and the automatic generation of a complete

system model based on configuration files. Finally, we show the

soundness of this methodology by comparing simulated data and

execution profiles obtained from the corresponding real platform.

2 RELATED WORK

The literature offers many real-time task simulators, including real-

time scheduling analysis tools and a graphical user interface (GUI)

to visualize the tasks’ temporal behavior, easing a visual inspection

of the effect of various task placement and scheduling policies.

Among open-source real-time simulators, we recall MAST [8, 9],

which supports scheduling strategies like Earliest Deadline First

(EDF), Rate Monotonic (RM), and their hierarchical composition,

and various servers (e.g., Sporadic and Polling servers), allows

to perform worst-case schedulability analysis and supports many

shared resources protocols, like Priority Inheritance Protocol (PIP),

Priority Ceiling Protocol (PCP), and Stack Resource Policy (SRP).

The MAST tool suite’s heart lies in the MAST model, similar to the

one defined in the MARTE UML profile for embedded real-time

systems [19]. Unfortunately, MAST does not support energy aware-

ness. Cheddar [25] is a simulator that implements well-known

scheduling algorithms like EDF and RM and shared resources pro-

tocols (PCP and PIP). It supports multi-processor systems, but it

does not consider energy-related issues and does not directly sup-

port ARM big.LITTLE architectures, while the simulator proposed

in this paper actively supports it with a focus on the recent Dy-

namIQ extensions. Similarly, SIMSO [6] supports multi-processor

architectures and various schedulers, but it is not energy aware.

Moving on to simulators that consider the energy-related fea-

tures of the underlying hardware, Simulation Tool for Energy Effi-

cient Real Time Scheduling and Analysis (STREAM) [7] is not open

source and shifts the focus to energy-efficient scheduling while

supporting multi-processor architectures. It implements several

scheduling algorithms, synthetic task set generation, modules for

performance analysis, and the generation of execution traces. Like-

wise, SPARTS [18] is another simulator designed to simulate power-

aware scheduling strategies; its extensible design considers various

task properties, scheduling algorithms, and hardware models for

a wide variety of applications. YARTISS [4, 5] evaluates schedul-

ing algorithms considering overheads and effects due to the target

hardware platform; in this simulator, energy consumption is an

optional parameter associated with each task. Finally, the EWARDS

framework [1] explores at design time the performance and energy

capabilities of modern Massively Parallel Multi-Processors System-

on-Chip (MP2SoC) architectures. It combines power management

techniques with clustering-based scheduling and extends MARTE

with power aspects typical of MP2SoC systems, with the ultimate

goal of saving energy at runtime. This framework demonstrates

the validity of Model-Driven Engineering (MDE) techniques to the

design and implementation of energy-aware scheduling techniques.

In general, no real support to the ARM big.LITTLE architecture is

available in these simulators.

In addition to open-source and research-focused simulators, com-

mercial tools are also available on the market, like the well-known

RapiTime1 and MATLAB. These tools implement a comprehensive

set of features, including performing on-target software verification,

1RapiTime home page: www.rapitasystems.com/products/rapitime

www.rapitasystems.com/products/rapitime

Simulating Time and Power of Real-Time Tasks on Embedded Platforms SAC’22, April 25 śApril 29, 2022, Brno, Czech Republic

structural coverage analysis, simplifying the software verification

process, and producing evidence for specific code certifications.

MATLAB has been used together with partitioning algorithms de-

signed on purpose in [11] and with Integer Linear Programming

(ILP) methods (without real-time constraints) in [26] to partition

the task set for many-core hardware with cluster structures, like

ARM big.LITTLE. However, these tools are closed-source, and the

degree of customization that users can make is limited compared

with the open-source solution that we present in this paper.

A final notable example among open-source real-time simula-

tors is RTSim [20], a simulation library that focuses on the timing

behavior of real-time applications, implementing multiple schedul-

ing algorithms, resource sharing protocols (Priority Inheritance),

resource reservations (like the CBS server), supporting multi-core

system architectures (with partitioned and global strategies). It has

partial support for power-aware systems, thanks to an extension

that introduces an ARM big.LITTLE energy model fitted on data col-

lected on an existing platform [2]. This work also highlighted how

the CPU type in use (big vs. LITTLE), its operating frequency, and

the type of workload running on it (e.g., CPU vs. memory-bound)

are all contributing factors that determine both how the power con-

sumption and the execution time scale when changing the system

configuration. This extension has been recently used to evaluate

the performance of energy-aware task placement strategies for real-

time systems running on ARM big.LITTLE architectures [16, 17].

However, the RTSim energy-aware support for just one hardware

architecture limits its usefulness. In this work, we extend RTSim to

provide a more flexible approach to power-aware real-time systems

simulation, introducing the capability to support various hardware

architectures, focusing on embedded devices.

3 PROPOSED APPROACH

In this section, we illustrate the approach we followed to address

the problem of realistically simulating real-time tasks on embedded

platforms with DVFS capabilities. In principle, we can divide our

approach into two main phases: (i) data collection and elaboration

and (ii) system simulation.

In the first phase, a custom profiling suite is deployed on the tar-

get platform, on which it performs a set of automated profiling runs,

under various DVFS settings, collecting several metrics over time:

execution time of the tasks, temperature of the cores and power

consumption of the platform. Then, another software component,

typically running on a general-purpose machine, can post-process

the collected data, calculating statistics and model parameters that

are converted into a suitable format to be used when simulating

the corresponding platform. This data is used in the second phase,

along with a system description provided by the user, to properly

simulate the timing behavior of real-time tasks on the designated

platform, along with its estimated power consumption and thermal

behavior throughout the simulation.

The software is open-source, and it is freely available, under a

GPLv3 license, at: https://gitlab.retis.santannapisa.it/parts.

Researchers or practitioners can conveniently extend them, should

they need to provide support for additional embedded platforms or

experiment with novel energy-aware schedulers.

Algorithm 1: Algorithm used to profile an embedded plat-

form.
foreach 𝐼 ∈ 𝐼𝑠𝑙𝑎𝑛𝑑𝑠 do

for 𝑛 ← 1 to #𝐶𝑃𝑈𝑠 (𝐼) do
foreach 𝐹 ∈ 𝐹𝑟𝑒𝑞𝑠 (𝐼) do

set frequency of island 𝐼 to 𝐹 ;

foreach𝑊 ∈𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑠 do
for 𝑟 ← 1 to 𝑁𝑟𝑒𝑝 do

for 𝑖 ← 1 to 𝑛 do
start an instance of𝑊 pinned

on the 𝑖-th core of island 𝐼 ;

start the data collection application ;

3.1 Data Collection

This section presents PARTProf, the software we realized to profile

and analyze the execution of real-time tasks on embedded platforms.

This software comprises two interacting components: the host and

the embedded component. The first runs on a workstation machine,

while the latter is automatically deployed and runs on the embedded

platform under analysis. Both components can easily be deployed

on Linux hosts and embedded devices running Linux2.

PARTProf automatically performs several tests on the target plat-

form; each test consists of running a specific type of workload on

the target machine and collecting key information to simulate the

execution of similar real-time tasks on the given platform. PART-

Prof provides a set of tasks that represent typical workload types

of both CPU and data-intensive applications: (i) hash: SHA-256

checksum algorithm. (ii) encrypt/decrypt: triple DES encryption

and decryption algorithm. (iii) gzip: compression algorithm, run

with various compression levels, from the fastest (1) to the slowest

(9). (iv) cache stress app: application purposely developed to gener-

ate a configurable rate of cache misses to simulate generic workload

types, from always-hit (cache saver) to never-hit (cache killer): it

accesses elements in an array bigger than the size of the Last Level

Cache (LLC), generating one access with a displacement bigger than

the cache line size each time a miss should occur. (v) idle: no task is

executed; the system switches to the clock-gating idle state3 [21].

As it will be shown in section 4, these applications exhibit diverse

behaviors both with respect to DVFS and to multi-core scalabil-

ity. Even among łrealž application workloads (so excluding the

cache stress applications), we registered a difference of more than

20 times between maximum (gzip) and minimum (encrypt/decrypt)

observed cache misses, showing that the selected applications set

does represent both CPU and memory-bound applications alike.

Users can easily customize the set of workloads tested on each

platform by editing a couple of configuration files. This allows for

gathering data that more tightly represents workloads of interest.

The input/output files required by some of the aforementioned

data-intensive workloads are randomly generated at the beginning

of each experiment and stored in a ramfs partition, limiting interac-

tions with disks and SD card devices to the bare minimum (storage

access is not simulated).

2At the moment, we successfully deployed the embedded component of PARTProf on
two Linux distributions, Ubuntu and PetaLinux.
3Most multi-core embedded platforms can access deep idle states only when all CPUs
on the same frequency island are idle; simulating the power consumption under various
idle states is among the planned future extensions.

https://gitlab.retis.santannapisa.it/parts

SAC’22, April 25 śApril 29, 2022, Brno, Czech Republic Gabriele Ara, Tommaso Cucinotta, and Agostino Mascitti

The profiling of a platform is performed according toAlgorithm 1,

which iterates all possible system configurations and starts a vari-

able number 𝑛 of tasks (at most one per CPU and only on one

frequency island at a time). Profiling multiple tasks on different

cores simultaneously is particularly relevant and an essential im-

provement over similar related work [2] because it allows for a more

accurate representation of the system’s behavior when multiple

tasks are running concurrently. Each test can be repeated auto-

matically for a configurable number of times (𝑁𝑟𝑒𝑝). The software

collects each task execution time for each test run and runs a data

collection application concurrently to the profiled tasks4.

The data collection application periodically samples a set of

key metrics useful for the simulation of real-time tasks; the set

of supported metrics varies from platform to platform because

different devices may expose different kinds of sensors for the

same metric. In general, metrics collected during each run include

power consumption, the temperature of the CPU, and actual CPU

frequency, which may differ from the one selected by PARTProf due

to thermal issues. Sections 4 and 5 provide more details about the

practical use of PARTProf and discuss potential issues that should

be addressed to improve the performance of this tool.

The design of the data collection application is modular and

easily extensible to expand its support to more platforms in the

future. Platforms that do not ship with internal sensors for power

consumption or other useful metrics (e.g., CPU temperature) can

also be profiled using external power meters attached to the em-

bedded platform itself. Indeed, we profiled a Raspberry Pi 4 Model

B using this approach in section 4.1.

After completing the first phase, all data samples and logs are

collected to be post-processed by the host application component.

The host application calculates statistics on the collected data and

generates a set of CSV format tables, to be used as input to PARTSim

or manually inspected.

3.2 Simulation

PARTSim is the simulator we developed to support DVFS-capable

platforms as an extension to RTSim. Partial support for DVFS in

RTSim has already been introduced in [2], which implements power

consumption and execution timemodels. However, these are limited

to ARMbig.LITTLE platformswith exactly two islands. For example,

the recent ARM DynamIQ architecture could not be supported.

The original RTSim [20] is an extensible, event-based, open-

source library written in C++ that allows for simulating the timing

behavior of real-time systems. Typically, RTSim is used to simulate

worst-case scheduling scenarios for real-time task sets using a

given scheduling policy to check whether the resulting schedule

is feasible or not (i.e., whether any deadline miss occurs). Each

RTSim simulation can be traced, and users can inspect the resulting

schedule or visualize the events that occurred during the simulation.

3.2.1 Power Consumption and Execution Time Models in RTSim.

Each simulated CPU in RTSim must be associated with its own

CPU Model, which implements the estimation of both power and

4Preferably, the data collection application runs on a separate frequency island; on
platforms that only have one frequency island, preference goes to cores not involved
in the current test run, if any.

execution time for any task running in the system, adjusting au-

tomatically task duration and power consumption depending on

the DVFS configuration and selected CPU. The simulator keeps

track of activation/termination of tasks and the per-CPU power

consumption, providing an estimate of the final overall energy con-

sumption throughout a simulation. For this purpose, RTSim already

implements two models: a simple linear model and a task model

based on [2], specific for ARM big.LITTLE platforms.

The original RTSim implementation provides a simple generic

model that simulates the variation of the power consumption and

execution time of real-time tasks with the frequency. This first

model does not distinguish among different workload types that

could run on the system; it merely estimates the power consump-

tion 𝑃 and the execution time 𝐶 of a real-time task depending on

the current Operating Performance Point (OPP), uniquely identi-

fied by a pair of voltage 𝑉 and frequency 𝑓 values, as: 𝑃 (𝑉 , 𝑓) =

𝑉 2 · 𝑓 ; 𝐶 (𝑓) =
𝐶𝑚𝑎𝑥 ·𝑓𝑚𝑎𝑥

𝑓
, where 𝐶𝑚𝑎𝑥 represents the expected

execution time of the task at the maximum frequency 𝑓𝑚𝑎𝑥 .

RTSim was later extended in [2], which introduced a more ac-

curate model for ARM big.LITTLE platforms, taking into account

the type of workload running on each CPU at any time. The power

consumption of a CPU island is computed as: 𝑃 =
∑𝑁𝐶𝑃𝑈

𝑖=1 𝑃𝑊𝑖
(𝑓),

where𝑊𝑖 represents the workload currently in execution on the 𝑖-th

core, or idle5, and 𝑃𝑊𝑖
(𝑓𝑖) is its associated single-CPU power con-

sumption under a frequency 𝑓 for the island. The 𝑃𝑊𝑖
(𝑓) function

is approximated with a per-workload analytical model, using four

real parameters fitted on the measured data on an ODROID-XU3

platform. For a detailed description of the model, please refer to [2].

This model has been used for example to compare different power-

aware real-time schedulers on ARM big.LITTLE platforms [16].

3.2.2 PARTSim Data-Driven Simulation Model. PARTSim extends

some of the concepts already present in RTSim for big.LITTLE

platforms to generic or heterogeneous multi-core platforms and

introduces new mechanisms that ease the set-up of a multi-core

platform to simulate real-time power-aware scheduling policies.

PARTSim introduces an additional model to the ones described

above that does not make any assumption on the relationship be-

tween execution time and power consumption of the platforms with

respect to the CPU frequency. This data-driven model estimates

variations of power consumption and execution times directly łre-

playingž the real data as made available by the PARTProf output.

The tables produced by PARTProf for each platform provide these

estimations for each core type, frequency and workload type; the

combination of these three values precisely identifies the correct

data to use to estimate variations of execution times and power

consumption due to each type of task when running on each CPU

type. Also, PARTSim is capable of interpolating the data provided

by PARTProf, in case some points are skipped (useful to avoid mea-

suring all the frequencies, skipping some of them to reduce the

profiling time for a platform).

For a multi-core CPU island, PARTSim uses the following model

to calculate the power consumption of an island with 𝑁𝐶𝑃𝑈 cores:

5Internally to RTSim, the idle condition of a CPU is treated similarly to when the CPU
is running a specific task, i.e., it is associated with an island-and-frequency specific
power consumption.

Simulating Time and Power of Real-Time Tasks on Embedded Platforms SAC’22, April 25 śApril 29, 2022, Brno, Czech Republic

𝑃 = 𝑃𝑖𝑑𝑙𝑒 +

𝑁𝐶𝑃𝑈
∑︁

𝑖=1

(𝑃𝑊𝑖 − 𝑃𝑖𝑑𝑙𝑒) . (1)

where 𝑃𝑊𝑖
is the power consumption measured by PARTProf for

the whole island when running a benchmark of the same type

as the real-time task being simulated on core 𝑖 of the island, and

𝑃𝑖𝑑𝑙𝑒 is the measured power consumption with all cores idle. This

reflects the fact that most embedded platforms lack per-core power

monitors and provide power information for each island, or do not

have any embedded powermonitor. Examples of these platforms are

shown in section 4. Note that, for systems with multiple core islands

like big.LITTLE platforms, values in Eq.(1) need to be summed up

together to estimate the power consumption of the entire platform.

Furthermore, differently from RTSim, PARTSim uses a disjoint

declaration of power consumption and execution time models as

functions of the frequency: for any island, different estimation

models for power and execution time can be selected, providing

users the capability to mix different models.

3.2.3 Multicore CPU Thermal Modeling. In PARTSim, we are work-

ing on a new high-level model that might predict the thermal evo-

lution of a multicore CPU system over time, starting from a limited

subset of parameters that can be estimated using PARTProf.

This model is a very simplified view of a thermal system com-

posed of 𝑛 CPUs where each CPU 𝑖 has associated: a time-varying

temperature 𝑇𝑖 (𝑡); a thermal capacitance 𝐶𝑖 ; a coefficient 𝛼𝑖 regu-

lating heat transfers towards the environment at temperature 𝑇𝑒 ,

proportional to the difference 𝑇𝑒 −𝑇𝑖 (𝑡) (as per Newton’s cooling

law); coefficients 𝛽𝑖, 𝑗 ≡ 𝛽 𝑗,𝑖 regulating heat transfers towards any

other CPU 𝑗 ≠ 𝑖 , proportional to the difference𝑇𝑗 (𝑡)−𝑇𝑖 (𝑡); a point-

like heat pump that generates heat 𝑃𝑤,𝑖 when executing a specific

workload𝑤 (or even when idle, as a CPU is not entirely turned off

when idle). A simplifying assumption is the one of CPUs all consid-

ered uniform (𝐶𝑖 = 𝐶), and with similar heat transfer capabilities

with the environment (𝛼𝑖 ≡ 𝛼), which has a constant temperature

𝑇𝑒 . This would result in, e.g., a dual-core system modelled as:

[

¤𝑇1 (𝑡)
¤𝑇2 (𝑡)

]

=

[

−
𝛼+𝛽
𝐶

𝛽
𝐶

𝛽
𝐶 −

𝛼+𝛽
𝐶

]

[

𝑇1 (𝑡)

𝑇2 (𝑡)

]

+
1

𝐶

[

𝑃𝑤1 + 𝛼𝑇𝑒
𝑃𝑤2 + 𝛼𝑇𝑒

]

(2)

For 𝑛 cores this can easily be generalized introducing the vector of

temperatures 𝑇 (𝑡), the symmetric heat-transfer matrix 𝐴 and the

heat-pump vector 𝑏, as: ¤𝑇 (𝑡) = 𝐴𝑇 (𝑡) + 𝑏, which has the general

solution: 𝑇 (𝑡) =
(

∫ 𝑡

𝑡0
𝑒𝐴(𝑡−𝜏)𝑑𝜏

)

𝑏 + 𝑒𝐴(𝑡−𝑡0)𝑇 (𝑡0).

Figure 1 exemplifies the thermal model in use by highlighting all

heat transfers considered between each component. This model can

easily be solved numerically to simulate the evolution over time

of the thermodynamic system given its initial conditions (i.e., the

initial temperature𝑇𝑖 (𝑡0) for each CPU in the system) and the exter-

nal stimuli (i.e., the power-pump associated to each CPU 𝑃𝑖 due to

its instantaneously running workload in the current DVFS settings,

as well as the environment temperature𝑇𝑒). The parameters of this

model remain constant as long as the CPUs keep running the same

workloads. However, as the simulated OS scheduler runs different

tasks or puts cores in idle mode, or changes the DVFS settings of

the cores, then the model can be updated, using the current value of

ENVIRONMENT

𝛽1,3 𝛽2,4

CPU 1𝑃1

CPU 3𝑃3

CPU 2𝑃2

CPU 4𝑃4
Figure 1: Graphical representation of all heat transfers across

CPUs on a 4-core CPU island and the environment in our

thermal model.

the temperature vector 𝑇 (𝑡) as the new initial temperature vector

𝑇 (𝑡0) in the above model with updated parameters. This can be

repeated, simulating the thermal behavior of the platform, adapting

the parameters each time a configuration change happens. This

enables also simulation of active thermal protection measures acti-

vated by the OS, like activating (or speeding up) fans, by changing

the coefficients modeling heat transfer among parts of the system,

switching among a number of models with parameters fitted under

the different configuration states of the active cooling subsystem.

Since the external stimuli can be estimated using PARTProf, the

thermal properties of the system (i.e., the heat-transfer coefficients

and thermal capacitances) must be estimated numerically from

experimental data. PARTProf already collects all necessary data

from the embedded platforms, including the evolution of the system

temperature over time for each workload and DVFS condition. This

data can be used to fit the model’s unknown parameters, using

common tools such as the SciPy Optimize library6, so that the

simulated platform closely resembles the corresponding real one.

For that purpose, the steps described in algorithm 1 are still valid,

with the additional step of profiling each workload on each of

the CPUs for each island: that way, the heat transfer coefficients

between the different CPUs can be estimated.

The preliminary experiment in Figure 2 shows that the ideal

model described above, once its parameters have been fitted on ex-

perimental data, can be used to estimate the thermal evolution of an

entire CPU island quite effectively. PARTSim already implements

the described thermal model, while integration in post-processing

tools inside PARTProf is still underway. We plan to use it to simu-

late and test thermal-aware real-time scheduling strategies while

realistically emulating thermal protection mechanisms, for further

enhancing the accuracy of the power/timing simulations.

3.2.4 Implementation Details and Other Improvements to RTSim.

Simulating a multi-core platform in RTSim requires the user to in-

stantiate and interconnect several data structures, each representing

a different aspect of the hardware/software components being simu-

lated. Among the most common components we find the OS kernel

6See also https://docs.scipy.org/doc/scipy/reference/
optimize.html

https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy/reference/optimize.html

SAC’22, April 25 śApril 29, 2022, Brno, Czech Republic Gabriele Ara, Tommaso Cucinotta, and Agostino Mascitti

0 5 10 15 20 25 30

Time [s]

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

C
or

e
Te

m
pe

ra
tu

re
 [

°C
]

Measured CPU 0
Measured CPU 1
Measured CPU 2
Measured CPU 3

Simulated CPU 0
Simulated CPU 1
Simulated CPU 2
Simulated CPU 3

Figure 2: Comparison between an evolution of the temper-

ature of 4 Cortex-A15 (big) CPU cores and the simulated

evolution by our work in progress model for the same sce-

nario.

(MRTKernel), the real-time scheduler in use (Scheduler), the pro-

cessing hierarchy of the system (composed by a set of Island

and CPU instances). Furthermore, to simulate a real-time taskset

a number of Task instances must be declared, depending on the

task model in use (e.g., periodic, aperiodic). Finally, each CPU must

be associated with a corresponding CPUModel, which defines how

task durations and power consumption should scale depending on

the DVFS configuration. With so many components to instantiate,

RTSim requires many set-up operations.

PARTSim generalizes the implementation of the Island and CPU

components, enabling the instantiation of any generic and possibly

heterogeneous multi-core platform. Furthermore, it introduces a

novel platform generation paradigm that reduces simulation initial-

ization to a single operation. We implemented a novel class called

System, which automatically initializes all simulation components,

starting from a single YAML configuration file, which the System

class parses upon initialization. The format of these configuration

files is straightforward, yet they provide significant flexibility when

declaring a platform building blocks7. The configuration file en-

ables users to specify all system parameters, including the list of

CPU islands available, number of CPU cores (which is not lim-

ited anymore to a fixed number for all CPU islands), the scheduler

to use, the OPPs available for each island, and how to model the

power consumption and variation of the execution time with the

CPU frequency. With this new way of declaring system resources,

initializing a simulation in PARTSim is reduced to the following:

System sys("system_description.yaml");

4 EXPERIMENTAL RESULTS

To test our approach, we collected data from three embedded de-

vices with a heterogeneous set of features and architectures: (i) an

ODROID-XU3 board, equipped with a Samsung Exynos 5422 SoC,

an ARM platform featuring eight CPUs in a big.LITTLE configu-

ration, with four Cortex-A7 (LITTLE) and four Cortex-A15 (big);

7For the sake of brevity, we do not include an example of a system configuration file
and we remind to PARTSim documentation for further details.

for our tests, we used the official ODROID Linux kernel version

4.14.180. (ii) a Xilinx Zynq UltraScale+ ZCU102 board, equipped

with an XCZU9EG-2FFVB1156 MPSoC, featuring four ARM Cor-

tex-A53 CPUs; for our tests, we used the official PetaLinux 2020.2

distribution, with Linux kernel version 5.4.0. (iii) a Raspberry Pi

4 Model B board, equipped with a Broadcom BCM2711B0, which

includes four Cortex-A72 CPUs; for our tests, we used the official

Raspberry Pi OS, a Debian-based distribution, with Linux kernel

version 5.4.83.

4.1 Collecting Data With PARTProf

To gather data for PARTSim on each test platform, we used PART-

Prof as described in section 3.1. Given the high number of com-

binations of testing conditions (e.g., number of concurrent tasks,

CPU frequency, and counting), this section illustrates only the most

relevant results.

Notice that the three platforms differ for the mechanism used

to gather the power consumption of the CPU during each test run:

(i) the ODROID has a TI INA231 powermeter embedded and directly

connected to the power lines for each of its CPU islands, so we

read directly the power consumption as reported by these meters;

(ii) the Xilinx ZCU102 has a TI INA226 power meter connected to

the power lines of the Processing System (PS) and Programmable

Logic (PL) part of the board, so we settled with measuring the

power consumption of the PS part, which includes the onboard

CPUs; (iii) the Raspberry has no embedded power meter, so we

used an external ODROID Smart Power Meter v3.0 connected to

the entire board power supply.

Figure 3 shows how execution time and power consumption

of several tasks vary when changing the CPU frequency on each

platform and core type, using only one CPU core at a time. In this

figure, we show only a subset of the tasks described in section 3.1,

excluding tasks specifically developed to stress the LLC of each

embedded platform (cache stress app). As we can see, when iso-

lated, these workloads exhibit similar timing and power behaviors

to when running on the same platform/core type. The difference

between the nearly quadratic increase in power consumption with

frequency shown for the ODROID and the linear behavior shown by

the other two boards is most likely due to different implementations

of DVFS for different hardware platforms.

When we increase the count of concurrent tasks, some tasks

tend to deviate from the expected behavior. Figure 4 shows how

power consumption and execution time of these tasks is affected

by the number of parallel tasks of the same workload type running

while keeping the CPU frequency fixed8. In an ideal scenario, the

execution time should be unaffected by the number of parallel tasks

(each working on separate data), while power consumption should

increase linearly as the number of active cores increases. In reality,

the situation is more complicated than that.While it is true that each

concurrent application works on its private data, they all access

main memory to read input and write back output data. Each CPU

has its private L1 cache on each tested platform, but all CPUs share

the LLC and main memory access. For this reason, more memory-

intensive applications (and in general applications that generate a

higher number of L1 and LLC cache misses) experience blocking

8Similar results were obtained for other frequencies.

Simulating Time and Power of Real-Time Tasks on Embedded Platforms SAC’22, April 25 śApril 29, 2022, Brno, Czech Republic

hash gzip-1 gzip-5 gzip-9 encrypt decrypt idle

0.5 1 1.5 2
0.0

0.2

0.4

0.6

0.8

1.0

Frequency [GHz]

N
o
rm

al
iz
ed

E
x
ec
u
ti
o
n
T
im

e

(a) ODROID-XU3 (LITTLE core)

0.5 1 1.5 2
0.0

0.2

0.4

0.6

0.8

1.0

Frequency [GHz]

N
o
rm

al
iz
ed

E
x
ec
u
ti
o
n
T
im

e
(b) ODROID-XU3 (big core)

0.6 0.8 1 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

Frequency [GHz]

N
o
rm

al
iz
ed

E
x
ec
u
ti
o
n
T
im

e

(c) Raspberry Pi 4 Model B

0.4 0.6 0.8 1 1.2
0.0

0.2

0.4

0.6

0.8

1.0

Frequency [GHz]

N
o
rm

al
iz
ed

E
x
ec
u
ti
o
n
T
im

e

(d) Zynq UltraScale+ ZCU102

0.5 1 1.5 2

0.00

0.10

0.20

0.30

0.40

Frequency [GHz]

P
o
w
er

C
o
n
su
m
p
ti
o
n
[W

]

(e) ODROID-XU3 (LITTLE core)

0.5 1 1.5 2

0.00

0.50

1.00

1.50

2.00

2.50

3.00

Frequency [GHz]

P
o
w
er

C
o
n
su
m
p
ti
o
n
[W

]

(f) ODROID-XU3 (big core)

0.6 0.8 1 1.2 1.4

2.80

3.00

3.20

3.40

3.60

3.80

Frequency [GHz]

P
o
w
er

C
o
n
su
m
p
ti
o
n
[W

]

(g) Raspberry Pi 4 Model B

0.4 0.6 0.8 1 1.2
1.60

1.65

1.70

1.75

1.80

Frequency [GHz]

P
o
w
er

C
o
n
su
m
p
ti
o
n
[W

]

(h) Zynq UltraScale+ ZCU102

Figure 3: Variation of tasks execution time Ð (a), (b), (c), (d) Ð and power consumption Ð (e), (f), (g), (h) Ð when varying

operating CPU frequency on various embedded platforms and core types. All execution times are normalized with respect to

the longest execution time for each workload type, usually registered for the smallest frequency of the least powerful core on

each platform. Notice that the methodology applied for power consumption estimation varies from platform to platform.

1 2 3 4
0.3

0.35

0.4

0.45

Number of Concurrent Tasks

N
o
rm

al
iz
ed

E
x
ec
u
ti
o
n
T
im

e

(a) ODROID-XU3 (LITTLE core)

1 2 3 4

0.2

0.25

Number of Concurrent Tasks

N
o
rm

al
iz
ed

E
x
ec
u
ti
o
n
T
im

e

(b) ODROID-XU3 (big core)

1 2 3 4

1.05

1.2

1.35

Number of Concurrent Tasks

N
o
rm

al
iz
ed

E
x
ec
u
ti
o
n
T
im

e

(c) Raspberry Pi 4 Model B

1 2 3 4

0.4

0.5

0.6

Number of Concurrent Tasks

N
o
rm

al
iz
ed

E
x
ec
u
ti
o
n
T
im

e

(d) Zynq UltraScale+ ZCU102

0 1 2 3 4
0

0.05

0.1

0.15

0.2

Number of Concurrent Tasks

P
o
w
er

C
o
n
su
m
p
ti
o
n
[W

]

(e) ODROID-XU3 (LITTLE core)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Number of Concurrent Tasks

P
o
w
er

C
o
n
su
m
p
ti
o
n
[W

]

(f) ODROID-XU3 (big core)

0 1 2 3 4

3

3.5

Number of Concurrent Tasks

P
o
w
er

C
o
n
su
m
p
ti
o
n
[W

]

(g) Raspberry Pi 4 Model B

0 1 2 3 4

1.6

1.8

Number of Concurrent Tasks

P
o
w
er

C
o
n
su
m
p
ti
o
n
[W

]

(h) Zynq UltraScale+ ZCU102

Figure 4: Variation of tasks execution time Ð (a), (b), (c), (d) Ð and power consumption Ð (e), (f), (g), (h) Ð when varying the

number of tasks of the same workload type running on various embedded platforms and core types. Each concurrent task is

pinned to a separate core, with frequency fixed at 600MHz for all platforms. All execution times are normalized with respect to

the longest execution time for each workload type, registered for the smallest frequency of the least powerful core on each

platform. The value of ł0ž running tasks indicates the consumption of the target platform/island when no task is running

(idle). Notice that the methodology applied for power consumption estimation varies from platform to platform.

time due to contention when accessing data. The final result is that,

when increasing the number of concurrent tasks, the execution

time is not constant while the average power consumption exhibits

a less-than-linear behavior. When the running task is blocked, the

CPU reverts to its idle power consumption rate if no other task is

SAC’22, April 25 śApril 29, 2022, Brno, Czech Republic Gabriele Ara, Tommaso Cucinotta, and Agostino Mascitti

miss rate 0 % miss rate 20 % miss rate 40 % miss rate 60 % miss rate 80 % miss rate 100 %

0.5 1 1.5 2
0.0

0.2

0.4

0.6

0.8

1.0

Frequency [GHz]

N
o
rm

al
iz
ed

E
x
ec
u
ti
o
n
T
im

e

(a) ODROID-XU3 (LITTLE core)

0.5 1 1.5 2
0.0

0.2

0.4

0.6

0.8

1.0

Frequency [GHz]

N
o
rm

al
iz
ed

E
x
ec
u
ti
o
n
T
im

e
(b) ODROID-XU3 (big core)

0.5 1 1.5 2

0.0

0.1

0.2

0.3

Frequency [GHz]

P
o
w
er

C
o
n
su
m
p
ti
o
n
[W

]

(c) ODROID-XU3 (LITTLE core)

0.5 1 1.5 2

0.0

0.5

1.0

1.5

2.0

Frequency [GHz]

P
o
w
er

C
o
n
su
m
p
ti
o
n
[W

]

(d) ODROID-XU3 (big core)

Figure 5: Variation of tasks execution time Ð (a), (b) Ð and power consumption Ð (c), (d) Ð when varying operating CPU

frequency on various embedded platforms and core types. All execution times are normalized with respect to the longest

execution time for each workload type, usually registered for the smallest frequency of the least powerful core on each platform.

Notice that the methodology applied for power consumption estimation varies from platform to platform.

1 2 3 4
0.00

0.20

0.40

0.60

0.80

1.00

Number of Concurrent Tasks

N
o
rm

al
iz
ed

E
x
ec
u
ti
o
n
T
im

e

(a) ODROID-XU3 (LITTLE core)

1 2 3 4
0.00

0.20

0.40

0.60

0.80

1.00

Number of Concurrent Tasks

N
o
rm

al
iz
ed

E
x
ec
u
ti
o
n
T
im

e

(b) ODROID-XU3 (big core)

0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

Number of Concurrent Tasks

P
o
w
er

C
o
n
su
m
p
ti
o
n
[W

]

(c) ODROID-XU3 (LITTLE core)

0 1 2 3 4
0.00

0.20

0.40

0.60

Number of Concurrent Tasks

P
o
w
er

C
o
n
su
m
p
ti
o
n
[W

]

(d) ODROID-XU3 (big core)

Figure 6: Variation of tasks execution time Ð (a), (b) Ð and power consumption Ð (c), (d) Ð when varying the number of parallel

tasks execution of the same workload type. Frequency for all platforms is fixed to 600MHz. Each concurrent task is pinned to a

separate core on the target platform/island. All execution times are normalized with respect to the longest execution time for

each workload type, usually registered for the smallest frequency of the least powerful core on each platform. Notice that the

methodology applied for power consumption estimation varies from platform to platform.

ready. This behavior is particularly evident on LITTLE cores of the

ODROID and the Raspberry platforms.

To show the tight relationship between memory access patterns

and variations of both power consumption and execution time,

figs. 5 and 6 show experimental data collected using the custom

cache stressing application that we developed for PARTProf, vary-

ing the cache miss rate from 0 % (cache saver) to 100 % (cache killer).

As we increase the cache miss rate, the behavior of these applica-

tions differs even more from the ones shown before, both in the

frequency domain and depending on the number of concurrent

tasks. For high cache miss rates, improvements in task execution

times are less significant increasing the CPU frequency (due to

the increased impact of memory accesses on the instruction execu-

tion times), and the adverse effects introduced by blocking times

discussed above become significantly accentuated.

4.2 PARTSim Accuracy on Multi-Cores

In this section, we discuss the PARTSim approach to deal with

accuracy of the simulation of the behavior of real-time applica-

tions when multiple heterogeneous applications are running con-

currently on a multi-core architecture. The problem is that the

theoretical model in eq. (1) does not match exactly with the data

gathered by PARTProf, as shown in the above pictures. In our dis-

cussion, we ignore the most extreme cases shown in figs. 5 and 6;

from the data gathered during our experimentation, most łrealž ap-

plications exhibit relatively low levels of cache misses and memory

contention at most frequencies. This does not mean that all our

testing applications are CPU-bound (see section 3). Rather, the most

extreme situations shown in those figures are too artificial to be

considered close to the behavior of real-world applications. We will

also leave out cases in which the target platform activates thermal

throttling techniques; the discussion of those cases is postponed

for when PARTSim will be fully integrated with the thermal model

described in section 3.2.3.

As indicated in section 3.2, PARTSim uses the data collected and

elaborated by PARTProf to estimate both execution times and power

consumption, by looking up actual values collected on the target

platform. The three parameters used to perform this lookup are the

core type (if on an heterogeneous platform, like big.LITTLE), the

task frequency and the workload type. However, it is not reasonable

to produce lookup tables for all kinds of configurations and task

combinations on each platform; for this reason, we devised different

approaches to ładjustž collected values to simulate certain factors

influencing tasks execution times and power consumption on multi-

core systems. We will discuss these approaches as we evaluate their

performance. Each of the approaches described in this section can

be selected to produce PARTSim simulation tables automatically.

Simulating Time and Power of Real-Time Tasks on Embedded Platforms SAC’22, April 25 śApril 29, 2022, Brno, Czech Republic

Table 1: Error on execution times for homogeneous task sets (łrealž workloads only).

Approach

Absolute Percentage Error [%]

Overestimation Underestimation Both

90th Max 90th Max 90th Max

Single 0.03 10.27 8.02 47.40 6.66 47.40

Average 3.66 41.49 2.77 30.99 9.88 41.49

Maximum 16.05 90.10 0.00 0.00 16.05 90.10

To evaluate the various errors introduced by our approximations,

we compared the values obtained in simulation against the original

experimental data collected on all platforms described in section 4.1,

including all possible configurations of łrealž homogeneous task

sets. Tables 1 and 2 report the simulation error in PARTSim when

estimating task execution times and power consumption, respec-

tively; both tables indicate with 90th the simulation error at the

90th percentile and with Max the maximum error obtained in all

configurations.

4.2.1 Simulating Tasks Execution Time. The timing behavior of

łrealž (for fixed frequency/core type) tasks does not deviate much

from the ideal constant value. For this purpose, using the execution

time of a single task running in isolation can be pretty accurate:

for multiple parallel tasks, the error remains mostly limited (if we

neglect corner cases and effects of thermal throttling).

Table 1 shows a simulation error (i.e., comparing simulated re-

sults against profiled execution times) lower than 10 % in most cases

when using either the value collected when running a single task of

the given workload running in isolation (referred to as Single in the

table) or the average of all the values collected in the same core type

when increasing the number of parallel tasks (indicated as Aver-

age). Finally, theMaximum approach uses only the maximum value

measured for any number of concurrent tasks to simulate tasks exe-

cution time. Table 1 divides errors in two categories: Overestimation

errors indicate that the estimated execution time is greater than

the one obtained from experimental data, while Underestimation er-

rors indicate the opposite; finally, the Both columns considers both

kinds of errors. The rationale behind this split is that it is typical in

real-time systems to consider more harmful to underestimate the

execution time of a task rather than overestimate it, because the

latter could result in wrong analysis that would later lead real tasks

to miss deadlines.

From the results we can conclude that: the Single approach rarely

overestimates execution times, because typically tasks take less time

to run when they are alone in the system and longer when there

are other tasks in parallel on the same CPU island; the Average ap-

proach, treats both kinds of error equally, at the cost of an increased

simulation error when only a single task is running on the system

with respect to the previous approach; theMax approach, by defini-

tion, never underestimates task executions when compared against

the same data used to łcalibratež it, at the cost of a greatly increased

overestimation error. In general, the first two approaches rarely

achieve more than 10 % of errors, with the first one performing

better in the general case and the second one achieving smaller

errors in test cases deviating the most from the ideal behavior.

Table 2: Error on power consumption for homogeneous task sets (łrealž workloads only).

Approach

Absolute Percentage Error [%]

90th Max

Single 16.56 70.53

True regression 13.05 33.32

Fixed regression 10.65 26.82

0 0.5 1 1.5 2
0.0

0.2

0.4

0.6

0.8

Frequency [GHz]

P
o
w
er

C
o
n
su
m
p
ti
o
n
[W

]

prediction

measured

(a) ODROID-XU3 (LITTLE core)

0 0.5 1 1.5 2
0.0

2.0

4.0

6.0

Frequency [GHz]

P
o
w
er

C
o
n
su
m
p
ti
o
n
[W

]

prediction

measured

(b) ODROID-XU3 (big core)

Figure 7: Comparison between simulated and actual power

consumption for a heterogeneous set of tasks on the

ODROID-XU3 platform. The task set was composed of one

hash, one gzip-9, one encrypt and one decrypt task.

4.2.2 Simulating Tasks Platforms Power Consumption. In the power

dimension, the situation is slightly more complicated. If we fix the

frequency of a specific platform/core type, the most intuitive solu-

tion to simulate the execution of multiple concurrent instances of a

specific workload type is to use data from the execution of a single

task of that workload and to apply a linear model to generalize

the behavior for multiple cores. With this approach, we assume

that the power consumption for an individual workload increases

linearly with the number of concurrent tasks, as in the ideal case

described in the previous section, using eq. (1) to obtain the power

consumption of each CPU island. While this approach (named Sin-

gle in Table 2) is exact when a single task is running in the system,

errors become significant when simulating multiple concurrent

tasks on a multi-core platform.

Let us now consider the less-than-ideal behavior particularly

visible in fig. 4e. We can approximate it using another linear model:

we can fit the almost-linear behavior of measured data using a

linear regression model on data collected with PARTProf, from

no running task to one task per CPU on each frequency island;

eq. (1) is then used again with the 𝑃𝑖𝑑𝑙𝑒 and 𝑃𝑊𝑖
obtained from the

linear fitting for each task. This approach (True regression in Table 2)

introduces some errors when simulating a single task, but it can

also reduce errors for multiple task instances by a similar amount.

As often the case with linear fitting, the resulting linear model is

not guaranteed anymore to match the measured data for all points,

and for the case of no running task (idle), a different displacement

for each workload type may occur. A solution to this problem is

to fix the 𝑃𝑖𝑑𝑙𝑒 of each CPU based on the accurate measured value

and to calculate the contribution of each task 𝑃𝑊𝑖
as the value that

minimizes the error for various numbers of concurrent tasks (Fixed

regression in Table 2).

SAC’22, April 25 śApril 29, 2022, Brno, Czech Republic Gabriele Ara, Tommaso Cucinotta, and Agostino Mascitti

Table 2 shows simulation errors when evaluating the power

consumption of each platform in each configuration. In this case, the

third approach (Fixed regression), which minimizes the simulation

error while keeping the displacement of the linear model fixed to

𝑃𝑖𝑑𝑙𝑒 , outperforms the other two achieving an error below 10 %

for 90 % of the configurations, with the True regression as a close

second. Notice that the original power estimation implemented

for RTSim in [2] systematically results in at least 25 % error when

compared against its original reference platform (the ODROID-XU3)

in multi-core scenarios. This is because the model in [2] was based

on single-core data only, thus it is accurate only for single-core

power estimations.

4.2.3 Simulating Heterogeneous Task Sets. Finally, we performed

additional tests by deploying four different workload types on the

ODROID-XU3 board and comparing simulation results with actual

data from the board. Figure 7 compares the expected and simulated

values for power consumption using the third approach described

in the previous section (Fixed regression). In these tests, the error

between predicted and measured values is 3.65 % at 90th percentile,

with a maximum overall error of 5.36 %, showing up at the highest

frequencies, which could be mostly attributed to thermal throttling.

5 CONCLUSIONS AND FUTUREWORK

This paper addressed some of themain challenges for the simulation

of embedded real-time systems running on multi-processor power-

aware platforms.We presented PARTProf and PARTSim, two tightly

related tools that enable users to conveniently profile and simulate

the behavior of real-time software on embedded platforms with

power-aware features like DVFS. In particular, we described novel

mechanisms for platform simulation that are more general than

existing works in this field. We collected experimental data from

various ARM embedded platforms with these tools and verified the

accuracy of our simulator against the collected data, showing that

in realistic use-case scenarios PARTSim can accurately predict task

execution times and power consumption.

Regarding possible future research on the topic, we can observe

that the PARTProf and PARTSim tools might be improved by adding

a number of useful features: non-instantaneous DVFS frequency

switching; measurement and simulation of the impact on energy

consumption of deep-idle states, commonly present on a variety of

modern CPUs; support for a wider and richer set of workload types

to be profiled; simulation of actuators controlling heat dissipation

as commonly found on many platforms, e.g., fans, which can often

be controlled in speed by the OS. These details would allow for

obtaining even more realistic energy-aware simulations.

REFERENCES
[1] Manel Ammar, Mouna Baklouti, Maxime Pelcat, Karol Desnos, and Mohamed

Abid. 2018. Comparing Three Clustering-Based Scheduling Methods for Energy-
Aware Rapid Design of MP2SoCs. J. Signal Process. Syst. 90, 4 (April 2018), 34.

[2] Alessio Balsini, Luigi Pannocchi, and Tommaso Cucinotta. 2019. Modeling and
simulation of power consumption and execution times for real-time tasks on
embedded heterogeneous architectures. ACM SIGBED Review 16, 3 (2019), 51ś56.

[3] Mario Bambagini, Mauro Marinoni, Hakan Aydin, and Giorgio Buttazzo. 2016.
Energy-aware scheduling for real-time systems: A survey. ACM Transactions on
Embedded Computing Systems (TECS) 15, 1 (2016), 1ś34.

[4] Younès Chandarli, Frédéric Fauberteau, Damien Masson, Serge Midonnet, and
Manar Qamhieh. 2012. Yartiss: A tool to visualize, test, compare and evaluate
real-time scheduling algorithms.

[5] Younès Chandarli, Manar Qamhieh, Frédéric Fauberteau, and Damien Masson.
2014. Yartiss: A generic, modular and energy-aware scheduling simulator for
real-time multiprocessor systems. (2014).

[6] Maxime Chéramy, Pierre-Emmanuel Hladik, and Anne-Marie Déplanche. 2014.
SimSo: A Simulation Tool to Evaluate Real-Time Multiprocessor Scheduling
Algorithms. In Proc. of the 5th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS).

[7] Mayuri Digalwar, Pravin Gahukar, Sudeept Mohan, and Biju K Raveendran. 2015.
Stream: a simulation tool for energy efficient real time scheduling and analysis.
In Proceedings of 6th International Workshop on Analysis Tools and Methodologies
for Embedded and Real Time Systems (WATERS 2015).

[8] M González Harbour, JJ Gutiérrez García, JC Palencia Gutiérrez, and JM Drake
Moyano. 2001. Mast: Modeling and analysis suite for real time applications. In
Proceedings 13th Euromicro Conference on Real-Time Systems. IEEE, 125ś134.

[9] Michael González Harbour, J Javier Gutiérrez, José M Drake, Patricia López
Martínez, and J Carlos Palencia. 2013. Modeling distributed real-time systems
with MAST 2. Journal of Systems Architecture 59, 6 (2013), 331ś340.

[10] Sebastian Herbert and Diana Marculescu. 2007. Analysis of dynamic voltage/fre-
quency scaling in chip-multiprocessors. In Proceedings of the 2007 international
symposium on Low power electronics and design (ISLPED’07). IEEE, 38ś43.

[11] K. Honda, S. Kojima, H. Fujimoto, M. Edahiro, and T. Azumi. 2020. Mapping
Method of MATLAB/Simulink Model for Embedded Many-Core Platform. In 2020
28th Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP). 182ś186.

[12] Brian Jeff. 2013. big.LITTLE technology moves towards fully heterogeneous
global task scheduling. ARM white paper (2013).

[13] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan,
and Dean M. Tullsen. 2003. Single-ISA Heterogeneous Multi-Core Architec-
tures: The Potential for Processor Power Reduction. In Proceedings of the 36th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 36).
IEEE Computer Society, 81.

[14] Etienne Le Sueur and Gernot Heiser. 2010. Dynamic Voltage and Frequency
Scaling: The Laws of Diminishing Returns. In Proceedings of the 2010 Interna-
tional Conference on Power Aware Computing and Systems (HotPower’10). USENIX
Association, USA, 1ś8.

[15] S. M. V. N. Marques, T. S. Medeiros, F. D. Rossi, M. C. Luizelli, A. G. Girardi, A. C. S.
Beck, and A. F. Lorenzon. 2019. The Impact of Turbo Frequency on the Energy,
Performance, and Aging of Parallel Applications. In IFIP/IEEE 27th International
Conference on Very Large Scale Integration (VLSI-SoC). 149ś154.

[16] Agostino Mascitti, Tommaso Cucinotta, and Mauro Marinoni. 2020. An adaptive,
utilization-based approach to schedule real-time tasks for ARM big. LITTLE
architectures. ACM SIGBED Review 17, 1 (2020), 18ś23.

[17] Agostino Mascitti, Tommaso Cucinotta, Mauro Marinoni, and Luca Abeni. 2020.
Dynamic partitioned scheduling of real-time tasks on ARM big. LITTLE archi-
tectures. Journal of Systems and Software (2020), 110886.

[18] Borislav Nikolic, Muhammad Ali Awan, and Stefan M Petters. 2011. SPARTS:
Simulator for power aware and real-time systems. In 2011IEEE 10th International
Conference on Trust, Security and Privacy in Computing and Communications.
IEEE, 999ś1004.

[19] Object Management Group (OMG). April 01, 2019. MARTE Specification. https:
//www.omg.org/spec/MARTE.

[20] Luigi Palopoli, Giuseppe Lipari, Gerardo Lamastra, Luca Abeni, Gabriele
Bolognini, and Paolo Ancilotti. 2002. An object-oriented tool for simulating
distributed real-time control systems. Software: Practice and Experience 32, 9
(2002), 907ś932.

[21] Preeti Ranjan Panda, BVN Silpa, Aviral Shrivastava, and Krishnaiah Gummidipudi.
2010. Power-efficient System Design. Springer Science & Business Media.

[22] Javier Perez Rodriguez and Patrick Meumeu Yomsi. 2019. Thermal-Aware Schedu-
lability Analysis for Fixed-Priority Non-preemptive Real-Time Systems. In 2019
IEEE Real-Time Systems Symposium (RTSS). 154ś166.

[23] Eduardo Quiñones, Sara Royuela, Claudio Scordino, Paolo Gai, Luís Miguel Pinho,
Luís Nogueira, Jan Rollo, Tommaso Cucinotta, Alessandro Biondi, Arne Hamann,
et al. 2020. The AMPERE Project: A Model-driven development framework
for highly Parallel and EneRgy-Efficient computation supporting multi-criteria
optimization. In 2020 IEEE 23rd International Symposium on Real-Time Distributed
Computing (ISORC). IEEE, 201ś206.

[24] Julius Roeder, Benjamin Rouxel, Sebastian Altmeyer, and Clemens Grelck. 2021.
Energy-Aware Scheduling of Multi-Version Tasks on Heterogeneous Real-Time
Systems. In Proceedings of the 36th Annual ACM Symposium on Applied Computing
(SAC ’21). Association for Computing Machinery, New York, NY, USA, 501ś510.

[25] Frank Singhoff, Jérôme Legrand, Laurent Nana, and Lionel Marcé. 2004. Cheddar:
a flexible real time scheduling framework. In Proceedings of the 2004 annual ACM
SIGAda international conference on Ada.

[26] ZHAOQIAN ZHONG. 2019. Model-Based Parallelizer for Embedded Control
Systems on Single-ISA Heterogeneous Multicore. INTERNATIONAL JOURNAL
OF COMPUTERS AND TECHNOLOGY 19 (February 2019), 7470ś7484.

https://www.omg.org/spec/MARTE
https://www.omg.org/spec/MARTE

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Proposed Approach
	3.1 Data Collection
	3.2 Simulation

	4 Experimental Results
	4.1 Collecting Data With PARTProf
	4.2 PARTSim Accuracy on Multi-Cores

	5 Conclusions and Future Work
	References

