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Abstract—This paper proposes a novel framework and pro-
gramming model for real-time applications supporting a declara-

tive access to real-time CPU scheduling features that are available
on an operating system. The core idea is to let applications
declare their temporal characteristics and/or requirements on the
CPU allocation, where, for example, some of them may require
real-time POSIX priorities, whilst others might need resource
reservations through SCHED_DEADLINE. The framework can
properly handle such a set of heterogeneous requirements con-
figuring an underlying multi-core platform so to exploit the
various scheduling disciplines that are available in the kernel,
matching applications requirements. The framework is realized
as a modular architecture in which different plugins handle
independently certain real-time scheduling features within the
underlying kernel, easing the customization of its behavior to
support other schedulers or operating systems by adding further
plugins.

Index Terms—Real-Time Systems, Scheduling, Programming
Model, Linux

I. INTRODUCTION

In the past decade, we witnessed a raising interest in the

topic of running real-time applications in distributed or embed-

ded systems by deploying them on General Purpose Operating

Systems (GPOSes). Examples of application scenarios that

can leverage real-time features included in modern GPOSes

are multimedia applications like audio/video processing and

streaming, gaming, etc. Typically, these application scenarios

are characterized by the coexistence of both real-time and non-

real-time applications on the same host.

Among the various GPOSes available that provide support

for both real-time and non-real-time applications at the same

time, Linux is a common choice for applications that must

support a rich set of multimedia peripherals, thanks to the

plethora of libraries and tools that have been developed over

the past years. In addition, the use of the Android Operating

System (OS), based on Linux, has become a popular choice

for a number of embedded systems for multimedia services,

from tablets to infotainment systems deployed in modern cars.

Similarly to any other GPOS, the Linux kernel has been

focusing on minimizing average OS overheads and optimizing

in-kernel operations so to lead to the maximum possible per-

formance for applications, while keeping good responsiveness

for interactive workloads, notably user interactions and mul-

timedia applications. However, Linux has been consistently

improving its support for real-time systems through a set of in-

teresting features [1]: the inclusion of POSIX real-time exten-

sions [2] and the support for real-time mutexes; high-resolution

timers with nano-second precision; removal of the Big Ker-

nel Lock (BKL)1; enhancements to the kernel preemptibility

options; the introduction of NO_HZ for reducing overheads

of the periodic bookeeping timer; the PREEMPT_RT [3], [4]

variant that reduces worst-case scheduling latencies by running

device drivers as kernel threads that can be scheduled and

turning most of the spinlocks into mutexes; and the addition of

the SCHED_DEADLINE process scheduler [5], implementing

a global Earliest Deadline First (EDF) algorithm (but it can

also be configured as partitioned or clustered EDF) that uses

the Constant Bandwidth Server (CBS) [6] algorithm to provide

temporal isolation among tasks. In addition, a number of

frameworks and middlewares have been developed to further

enhance the capabilities of Linux as a powerful development

platform for real-time applications. These features increased

the relevance of Linux as a suitable platform to develop soft

real-time applications.

Due to its open nature, Linux may be required to host a

variety of different applications with heterogeneous temporal

characteristics and real-time requirements, ranging from inter-

active applications, to multimedia and virtual-reality tools, to

real-time control applications for factory automation. These

applications may activate periodically or sporadically, they

may require access to the real-time scheduling priorities, or

sometimes these should be someway inferred by their period-

icity as compared to the one of other co-located applications,

or they may require SCHED_DEADLINE reservations. In a

true component-based approach for realizing complex real-

time systems, it is all but trivial to understand how to let all

of these applications coexist on the same system, exploiting

the different schedulers that are available, and how to configure

them for an optimal use of an underlying multi-core platform.

A. Contribution

In this work, we propose a novel framework that can be

used to provide access to real-time CPU scheduling features

that are available on Linux, improving the usability of existing

real-time capabilities by providing a unified API.

The main focus is to enrich the OS with a new middleware

that can be used to declare the temporal characteristics of

real-time applications without enforcing the use of a specific

scheduling technique. Instead, a declarative approach has been

adopted to allow applications characterized by heterogeneous

1For more info see https://kernelnewbies.org/BigKernelLock
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requirements to coexist on the same host. Leveraging this

new framework, applications can simply declare a set of

timing characteristics and scheduling requirements that may

span from informing the OS about their minimum periodicity

and/or worst-case execution times, to requesting the use of

specific POSIX real-time priorities or SCHED_DEADLINE

reservations, without worrying about the techniques that will

be used to match the declared attributes by each application.

To achieve this goal, the proposed framework adopts a

modular architecture that properly handles a number of het-

erogeneous requirements, in which a set of plugins are used

to translate from the attributes declared by each application to

proper configurations of the real-time features exposed by the

underlying kernel. The framework is capable of partitioning

the tasks requiring real-time scheduling services among the

CPUs available in an underlying multi-core platform, so that

for example rate-monotonic is used on some CPUs, while

SCHED_DEADLINE reservations is used on others. This

modularity can be leveraged not only to support a plethora of

different real-time applications on Linux, but also to provide

a common API that can be exploited in the future to support

portability of real-time applications across other OSes, by

adding platform-specific implementations of certain plugins.

As a proof of concept, in this work we present a first open-

source implementation of this framework for the Linux OS.

The software is freely available on GitHub, under a GPLv3

license, at: https://github.com/gabriserra/declarative-rtd.

II. RELATED WORK

In this section, we briefly summarize available mechanisms

to run real-time applications on GPOSes, with a particular

focus on Linux, along with some of the extensions appeared

in the research literature. The discussion considers the most

relevant works only, while a comprehensive review of existing

state-of-the-art approaches is postponed to future works.

Historically, real-time applications support has been intro-

duced in Linux by using techniques that embed a real-time

micro-kernel layer between the hardware and the kernel, that

in practice acts like a hypervisor. In this scenario, there is

a distinct separation between real-time and “normal” tasks,

in which real-time tasks are handled by the corresponding

micro-kernel while the others are scheduled at a lower priority

by Linux. The two major implementations of this paradigm

have been RT-Linux, proposed by Yodaiken et al. [7], and

RTAI, proposed by Mantegazza et al. [8]; the latter has

also been later forked by Gerum et al. into another project

called Xenomai [9]. These solutions usually require real-

time applications to be written using specific APIs and they

must be distributed as kernel modules instead of user-space

applications. For this reason, these solutions are not suitable

for certain application scenarios, like audio/video processing

applications with soft real-time requirements that should be

executed by unprivileged users and in user-space context. A

similar approach characterizes the implementation of a kernel-

level partitioning mechanism for Linux that abides by the

ARINC-653 specification [10]. This implementation provides

a high level of isolation among applications, as needed for the

avionic field [11], but they are not suitable for other application

scenarios.

Many real-time kernel extensions and middleware solutions

have been proposed to support both hard and soft real-

time applications on Linux or other GPOSes. A representa-

tive example is KURT Linux [12], which proposes a major

modification to the scheduling mechanisms by introducing

3 distinct operational modes: in normal mode the system

behaves like any traditional GPOS; in real-time mode only

real-time processes are executed and normal processes are

blocked; finally, in mixed mode both real-time and non real-

time applications can be executed concurrently. In particular,

the last mode allows for the execution of non real-time

processes during the slack time of real-time applications, hence

real-time applications have a strict precedence over other ones.

In [13] authors present DQM, a quality of service middleware

for mediating access to physical resources by applications

that supports dynamic workloads. In QRAM [14], an off-

line optimization for allocating multiple resources across real-

time applications is proposed to maximize an overall QoS

cost function for the system. The approach has also been

extended [15] with an adaptive on-line optimization policy.

Another real-time extension for the Linux kernel with a

certain relevance within the research community is represented

by LITMUSRT [16] by Calandrino et al., which can be used to

implement different scheduling algorithms and other real-time

policies in the form of plugins. The framework is composed

by a set of patches to be applied to the Linux kernel and

a user-space library that is used by real-time applications to

exploit the added functionality. The main goal of LITMUSRT

is to provide the research community with a test bench for real-

time scheduling algorithms so to ease their implementation on

Linux. However, it is out of the scope of LITMUSRT to provide

the support for multiple scheduling policies at the same time,

as only one plugin at a time can be loaded in the system.

Another very similar approach is represented by the Real-

timeKit Library (RTKit) [17], which is a D-Bus system service

that can be used to request user processes or threads to be

executed with the SCHED_RR scheduling policy. This service

however does not provide any real-time guarantee by itself, it

only allows user applications to be executed with a given set

of real-time scheduling parameters.

Another project that we deem worth mentioning is also the

Flexible Integrate Real-time Scheduling Technologies (FIRST)

Scheduling Framework (FSF) [18], which is an operating

system-independent framework that organizes a number of

scheduling algorithms to work in cooperation (including both

fixed priority (FP) and dynamic priority (DP) scheduling

algorithms) in a hierarchical scheduling architecture. This

framework also relies on a set of reservation techniques to

provide temporal isolation among real-time tasks and appli-

cations can establish with the system a contract so that they

will be provided a set of guarantees. FSF does not have a

Linux implementation, but it has been implemented both for

SHARK [19] and MaRTE [20] operating systems.
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FRSH/FORB [21] is a middleware based on CORBA that

lets real-time applications avail of reservation scheduling

across different physical resources, such as CPUs, disks and

network interfaces, made available through proper kernel-level

extensions to the Linux OS, such as the AQuoSA architec-

ture [22] supporting adaptive CPU reservations and real-time

extensions [23] for wireless communications compatible with

the IEEE 802.11 standard series. FRSH/FORB has also been

extended [24] with a transactional API for handling multi-

resource reservations in a distributed system.

Finally, the ExSched project [25] is an extensible frame-

work that aims to support real-time applications over multiple

operating systems. This framework is composed of a kernel

module and a set of plugins that can be chosen by the system

administrator. The goal of ExSched is to provide a unified

scheduler interface that can be used to implement different

schedulers (each with its own plugin implementation) without

patching and recompiling the underlying operating system.

However, this functionality is achieved with a great cost

in terms of performance: for example, their implementation

of an EDF scheduler plugin introduces an overhead on the

system that is about 180% in the worst case with respect

to SCHED_DEADLINE implementation on Linux [25]. Fur-

thermore, applications must be aware of their exact timing

parameters (task period, worst case execution time, etc.) to be

effectively used with ExSched.

Most of the solutions illustrated above rely on either fixed-

priority or EDF/CBS scheduling, with applications requiring

from the OS some specific policy and its parameters. This

work aims to support heterogeneous sets of applications with

different real-time characteristics and requirements, letting

applications declare to the OS just what they know about their

timing characteristics, leaving the OS free to use and configure

the available OS/kernel schedulers so to make an optimal use

of an underlying multi-core platform. The framework that is

presented in this work is inspired to the concept architecture

appeared in [26], which to the best of our knowledge has never

been actually implemented.

III. PROPOSED FRAMEWORK

In this section we present the declarative framework that

we realized to ease access to real-time scheduling policies

on Linux. The main focus of this framework is to provide

real-time applications with an abstraction level that can be

used to declare a set of scheduling parameters that shall be

associated with each real-time task. From these parameters, the

framework takes care of selecting the most proper scheduling

technique and configuring actual scheduling parameters of the

Linux thread associated to each task specification.

The design of this framework takes into account the pos-

sibility to port its implementation onto different POSIX-

compliant operating systems other than Linux, while at the

same time exposing at user-level an interface that can be used

to develop complex real-time and multimedia applications. As

it will be shown later, this framework can be installed over

an unmodified kernel to provide unprivileged users with the

capability to run applications that rely on the framework’s

functionality to meet their real-time requirements.

To accomplish these goals, this framework is not designed

to be part of the Linux kernel, but it is composed of a shared

library that applications can use to declare their requirements

to a centralized authority. This is a daemon running with

superuser privileges, which is in charge of managing all real-

time applications in the system. With this solution, applications

running without any particular privilege can simply request the

daemon to set their own scheduling parameters.

The framework has been purposely developed to provide

an API which is completely independent from the scheduling

algorithm and policies that are actually used to meet the

demands of each application. As it will be shown later in

more details, the framework specifies an API that can be

used to provide actual scheduling services in the form of

plugins, which can be chosen at deployment time via a

simple configuration file by the system administrator. This

approach has been taken to provide a mean for researchers and

other developers to extend the functionality of the framework,

developing scheduling algorithms and policies to be used

via the generic user-level API provided by the framework

itself. This approach can be used to play with various real-

time scheduling policies on the Linux operating system. The

framework can also be ported to other POSIX-compliant OSes.

Independently of the plugins loaded with the daemon at any

time, the API provided by the shared library can be used inside

applications to declare a set of real-time parameters to be used

by real-time tasks. For each request, the framework responds

indicating whether it can be accepted by one of the plugins

or not. On acceptance, a single execution flow—i.e. a POSIX

thread—can be dynamically attached to the set of accepted

scheduling parameters. After this operation, the framework

sets the actual scheduling parameters of the attached thread

accordingly, depending on which plugin accepted it; for ex-

ample, a task that has been accepted by a plugin that relies on

SCHED_DEADLINE sets up a CPU reservation for the thread.

In case a request is rejected instead, it can be re-submitted after

relaxing some of the real-time parameters.

Any thread managed by the framework can be dynamically

detached from the accepted scheduling parameters; after this

operation another thread can be attached to them or they can

be released.

The real-time parameters that can be declared by each

task are the following ones: 1) a period T , expressed in

microseconds, which usually corresponds to the minimum

inter-arrival period between consecutive task instances; 2) a

runtime Q, in microseconds, which usually is equal to the

worst-case execution time of each task instance; 3) a relative

deadline D, that defaults to the same value as the period T ,

if specified; 4) a static priority P , in the range of standard

real-time POSIX priorities.

The declarative approach that characterizes this framework

allows applications to specify from none to all of these

parameters for each task; each plugin documentation specifies

which parameters are mandatory, which are desired, but not
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Figure 1. Architectural overview of the framework.

mandatory, and which parameters are not used. Hence, the

set of real-time parameters specified for each task are used to

automatically determine which plugin is used to schedule each

task. If at least one plugin accepts a task, the task is considered

as part of the scheduling task set and its parameters are used

by the selected plugin to generate the actual parameters that

are used to schedule the associated POSIX thread.

In addition, plugins can decide whether accept or reject

tasks depending on the result of some admission control

policy. This feature is optional and checks performed by each

plugin shall test only for necessary conditions—i.e. failure,

acceptance of the new task will inevitably lead to system

unschedulability. Tasks can specify whether they want to

bypass this admission control test upon task declaration.

An accepted task can later change its parameters without

disrupting any of the other accepted tasks. This operation is

atomic—i.e. multiple parameters can be changed atomically—

and the plugin that is selected to schedule a task may change

following this operation, if successful. If this change is not

accepted, the task will maintain the scheduling parameters

that were accepted last by the framework. This can be used

to dynamically request more computational resources to the

system or to release them when not needed anymore.

Finally, tasks may also declare optionally two different

values for their worst case execution time: in this case, Q
is interpreted as the minimum runtime requested by the task,

while the second value is a desired runtime Qd (higher than

Q), which may be accepted by the system if enough resources

are available. However, the system may be free to assign any

accepted runtime Qa ∈ [Q,Qd]. If this functionality is used,

each task can query at any time the accepted runtime by the

system and plan its own execution accordingly, enabling or

disabling optional paths in the execution flow if possible. Once

a value for the accepted runtime is selected by the framework,

it cannot change in the future without another explicit request

by the task itself.

A. Architecture Overview

The architecture of the framework is depicted in Figure 1,

where the relationships among the main framework com-

ponents are illustrated. The most important component of

the whole architecture is the central decision authority, the

RTS Daemon: this component is in charge of connecting and

coordinating all interactions among individual applications and

the scheduling algorithms that are loaded by the framework as

separated plugins. This is accomplished by providing each ap-

plication with a shared library that can be used to communicate

with the RTS Daemon. This library is called RTS Library and

it provides the set of APIs described in section III-B used to

declare the scheduling parameters associated to each real-time

task. The parameters are then forwarded to the RTS Daemon

via an Inter Process Communication (IPC) mechanism, namely

a UNIX socket connection.

The received information will then be delegated to the

plugins that are currently loaded along with the RTS Dae-

mon in execution. This kind of architecture was designed to

support various scheduling algorithms, each implemented by a

corresponding plugin. In particular, each plugin associated to

a specific scheduling algorithm will analyze the current task

set and the requested parameters for the new task and will

decide whether to accept it or not into the task set scheduled

with that algorithm. In case the plugin embeds an admission

criterion, acceptance can depend also on how many CPUs are

currently managed by each plugin, which can be customized

through the framework configuration file (see later). If at least

one algorithm will accept the task, it is accepted and assigned

to the highest-priority algorithm among the ones that can

schedule that particular task set in the current conditions. The

following sections provide further details for each component.

B. RTS Library API

Applications that want to leverage the real-time capabilities

of a Linux system using the provided framework will commu-

nicate with the RTS Daemon through a well defined interface,

which is implemented as a shared library and linked with the

application binary. The main functions exposed by the RTS

Library are illustrated in Table I. In addition, the provided

API contains some utility functions to implement periodic task

execution and to query the accepted parameters for each task.

Applications can declare the scheduling parameters of each

real-time task by filling an instance of the opaque type

rts_params, using the functions described in Table II. Once

the rts_params object has been filled with the declared

parameters, a new task admission request can be submitted

to the RTS Daemon by executing

rts_result_t result = rts_task_create(

struct rts_task* t, struct rts_params* p);

where rts_task is an opaque type that represents a task in

the system. A connection between each application using the

RTS Library and the RTS Daemon is performed automatically

on submission of the first request and kept for further requests.

This function returns RTS_OK on success and RTS_FAIL

on failure. If a desired runtime Qd is supplied among

the task parameters then the application can check the

accepted runtime assigned to the task by calling the

rts_task_get_accepted_runtime function with the same
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Table I
MAIN FUNCTIONS EXPOSED BY THE RTS LIBRARY API.

Function Description

rts_task_create Performs task admission test and applies the
specified rts_params to the new task.

rts_task_change Performs a new task admission test with the
specified rts_params; in case of failure the
task maintains its old parameters.

rts_task_release Releases a task, freeing its resources and de-
taching the attached POSIX thread, if any.

rts_task_attach Attaches a POSIX thread id to the given task.
rts_task_detach Detaches the POSIX thread assigned to a task;

after this call, the thread runs with a non real-
time priority and the task reference can then
be attached to another POSIX thread.

Table II
LIST OF PARAMETERS THAT CAN BE DECLARED FOR EACH TASK.

Parameter Unit Getter / Setter

Runtime μs
rts_params_get_runtime

rts_params_set_runtime

Desired Runtime μs
rts_params_get_des_runtime

rts_params_set_des_runtime

Period μs
rts_params_get_period

rts_params_set_period

Relative Deadline μs
rts_params_get_deadline

rts_params_set_deadline

Priority –
rts_params_get_priority

rts_params_set_priority

Scheduling Plugin –
rts_params_set_scheduler

rts_params_get_scheduler

Ignore Admission Test – rts_params_ignore_admission

rts_task object as argument. In case of failure, the request

can be repeated after changing some of the parameters.

Which parameter is mandatory and which is not is entirely

dependent on the plugins loaded with the daemon at runtime.

As it will be better shown later, the RTS Daemon will

interrogate each plugin to ask them whether the requested

parameters are suitable to execute a task with current system

configuration and each algorithm can either accept or refuse

a task depending on the supplied parameters. It is however

possible to specify for a certain task the plugin that shall be

used to schedule it. In that case, only the requested plugin will

be interrogated for admission.

Once a task is accepted, an execution flow (a thread) can

be associated with it using the rts_task_attach call, which

instructs the RTS Daemon to apply the actual scheduling

parameters to the given thread (identified via its Linux thread

ID) to match the results of the admission test. After that point,

the selected thread will run as a real-time task and will be

scheduled according to the rules implemented in the plugin

automatically selected for it.

For periodic tasks, the library provides some additional

functions to mark the beginning of the first period of execution

of the real-time task (rts_task_start), as well as a call that

can be used to suspend task execution waiting for the next

activation point (rts_task_wait_period).

The body of a sample thread that uses the API described in

/* Task representation */

struct rts_task t = RTS_TASK_INIT;

/* Task parameters */

struct rts_params p = RTS_PARAM_INIT;

/* Set task parameters */

rts_param_set_period(&p, T_PERIOD);

rts_param_set_runtime(&p, T_RUNTIME);

rts_param_set_des_runtime(&p, T_DES_RUNTIME);

rts_param_set_deadline(&p, T_DEADLINE);

/* Test for admission */

if (rts_task_create(&t, &p) != RTS_OK)

/* We can abort, or retry with different parameters */

return;

/* On success we attach an execution flow to the

* task specification */

rts_task_attach(&t, gettid());

/* Signals that a task begins its execution */

rts_task_start(&t);

while(!computation_ended()) {

/* Task runs the desired actions*/

mandatory_computation();

/* Enabling optional computation depending

* on the accepted runtime */

if (rts_task_get_accepted_runtime(&t) > T_RUNTIME)

optional_computation();

/* Suspend execution waiting for the next period */

rts_task_wait_period(&t);

}

/* Cleanup */

rts_task_release(&t);

Listing 1: Body of a real-time thread that uses the framework.

this section is shown in listing 1.

C. RTS Daemon

The RTS Daemon is in charge of forwarding each request

received by the various applications to the right plugin,

each implementing a different scheduling strategy. The RTS

Daemon does not interact directly with the Linux kernel to

satisfy the requests received by each application. Instead each

plugin shall implement its own scheduling policy on top of

the capability of the Linux kernel.

The list of plugins that are loaded at daemon initialization

time is provided by the system administrator via a simple

configuration file: this file is also used to assign each plugin

a different priority and a range of POSIX priorities that could

be used by the plugin itself when configuring the parameters

of Linux threads assigned to it (see section III-D).

Once a task request is received, the daemon will proceed

to interrogate each plugin, following the priorities provided in

the configuration file, to check whether it is possible to satisfy

that request by using the selected algorithm. The API that each

plugin should implement is illustrated in section III-D.

Each plugin can reply that it is perfectly capable to satisfy

the request as it is (RTS_OK), that the request satisfies its

mandatory requirements even if some recommended param-

eters are missing (RTS_PARTIAL), or that it is not suitable to

satisfy the request, either because some mandatory parameters
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are missing or because some necessary admission test resulted

in a failure (RTS_NO). Among all the responses, the daemon

will select the plugin with the highest priority (specified by the

user by means of a configuration file, see section III-D) that

replied with a RTS_OK value; if no plugin is found with this

criterion, the task is delivered to the plugin with the highest

priority that replied RTS_PARTIAL and if none can be found

then the request is denied. Finally, a response is sent back to

the requesting application.

D. RTS Plugins API

The structure of the RTS Daemon takes advantage of a

plugin-based and modular architecture. Each plugin must

implement a set of functions that are used by the RTS

Daemon to dispatch client requests. Each plugin will represent

a single real-time scheduling policy (which may correspond

to a specific real-time scheduling algorithm or multiple ones,

depending on the plugin implementation), which will leverage

the real-time functionality exposed by the underlying kernel

to schedule the provided real-time tasks.

Each plugin may implement an admission control mech-

anism that will be used to check whether a new task can

be admitted to the current task set or not. This test, if

implemented, shall be performed again each time a real-time

task will request a change to its current set of parameters.

In addition, a plugin can signal that the set of parameters

provided by the client cannot be used by that particular plugin

to schedule a task.

Table III shows the main functions exposed by each

plugin to exchange data with the RTS Daemon. Among

the plugins that responded at least RTS_PARTIAL to

rts_plg_task_accept or rts_plg_task_change, the

daemon selects one plugin to assign the given real-

time task and it signals the selected plugin via the

rts_plg_task_schedule function. The plugin then assigns

the real-time scheduling parameters to the POSIX thread

associated with that real-time task specification, if any, until

either the task is assigned to another plugin after a change in

its parameters or it is removed from the task set by the client.

Each plugin is implemented as a dynamic-link library that

implements at least the set of functions shown in Table III

and is distributed as a .so file that will be loaded by the RTS

Daemon on start up. These plugins operate at user-space level

and typically they can be executed on top of an unmodified

Linux kernel. In case a plugin relies on the features introduced

by a specific kernel module, the plugin can load it during the

initialization phase of the RTS Daemon. The set of plugins

that shall be loaded, as well as the pool of POSIX real-

time priorities that shall be used by each plugin to schedule

assigned tasks, is specified by the system administrator via

a configuration file. The format of the file is similar to the

example shown in listing 2: each line specifies the name of

a plugin to be loaded and a few parameters for each plugin.

These parameters are, in order, the range of POSIX real-time

priorities and the list of CPUs that the plugin can use to

Table III
MAIN FUNCTIONS EXPOSED BY EACH PLUGIN TO THE RTS DAEMON.

Function Description

rts_plg_task_accept Performs a new task admission test
with the specified rts_params. The
plugin may refuse to schedule a task
if the (optional) admission test fails or
the supplied parameters are not suit-
able to generate a schedule.

rts_plg_task_change Performs a new task admission test
with the specified rts_params.

rts_plg_task_release Notifies the plugin that a task left the
task set. Plugins shall perform here
cleanup operations.

rts_plg_task_schedule The RTS Daemon indicates to the plu-
gin that the given task has been as-
signed to it and that it should manage
its scheduling parameters accordingly.

rts_plg_task_attach The RTS Daemon instructs the plugin
to set the scheduling parameters of the
given POSIX thread to match the cor-
responding real-time task parameters.

rts_plg_task_detach The RTS Daemon instructs the plugin
to change the POSIX thread priority to
a normal one and that it is no longer
associated with the given task.

EDF 100-100 0

RM 50-99 1,2

RR 1-49 1,2

FP 1-99 3-7

Listing 2: Example of an RTS Daemon configuration file.

schedule tasks assigned to it, although task allocation to CPUs

depends on the implementation of each plugin.

When dispatching client requests to the plugins, the RTS

Daemon will assign each plugin a priority based on the order

in which they are specified in the configuration file.

IV. IMPLEMENTATION

The framework’s implementation reflects the architecture

illustrated in section III-A. In this section we summarize

the main characteristics of each plugin that we developed to

test the functionality of our implementation when multiple

scheduling algorithms are loaded at the same time.

A. EDF Plugin

This plugin implements the EDF scheduling algorithm,

which is well known to be optimum for single processor

systems [27]. In particular, we implemented a fully-partitioned

version of EDF applying a worst-fit task allocation strategy

among the CPU cores specified via the RTS Daemon con-

figuration file. Its implementation leverages the EDF imple-

mentation offered by Linux mainline kernel since version

3.14 [28] via the SCHED_DEADLINE scheduling class; this

class assigns each task its own reservation to be run into, based

on its runtime Q and period T . For this reason, an application

that would like to schedule a real-time task through this plugin

shall declare at least the period and the runtime of the task,

otherwise the task cannot be assigned to the EDF plugin. The
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optional deadline parameter D can also be specified, otherwise

it defaults to the same value as the period T . The plugin

calculates the utilization of each task τi in the system that

declared both its runtime and period, which is defined as the

ratio between Ui = Qi/min{Ti, Di}.
This plugin implements also a simple utilization-based task

admission test. Since each task can only be assigned to one

core, the least loaded core is selected and then an admission

test is performed to check whether the admission of the

new task into the current task set leads the system to an

overloaded condition. The load of each core k, given the

set of tasks assigned to that core Γk, is defined as the sum

of the utilizations of all the tasks belonging to Γk, that is

Uk =
∑

τi∈Γk
Ui =

∑
τi∈Γk

Qi/min{Ti, Di}.
The plugin currently disables the in-kernel necessary G-

EDF test performed by SCHED_DEADLINE, but it sets task

affinities and it implements a sufficient schedulability test for

each core k ensuring Uk is less than or equal to 1 [27] (the

value is customizable). Hence, given the least loaded core

k̄, this plugin accepts a new task τj to be scheduled if the

following condition holds true:

Uk̄ +
Qj

min{Tj, Dj}
≤ 1 (1)

If this condition is satisfied, the task is accepted and

assigned to the least loaded core k̄, otherwise it is rejected.

If a desired runtime Qd
j has been specified for the task, then

the task is assigned an accepted runtime Qa
j ∈ [Qj , Q

d
j ] that is

the highest value possible given the current load of the system

that does not break the acceptance condition:

Qa
j = max(Qj ,min(Qd

j , (1 − Uk̄) ·min{Tj, Dj})) (2)

In case the acceptance condition is not satisfied, but the task

has been accepted by this plugin anyway, then its accepted

runtime is equal to its minimum runtime Qj .

B. RM Plugin

This plugin implements the Rate Monotonic (RM) schedul-

ing algorithm, which is well known to be optimum for single

processor systems among FP scheduling algorithms [27]. In

particular, it implements a fully-partitioned version of RM

applying a worst-fit task allocation strategy on top of the

POSIX SCHED_FIFO scheduling policy among the CPU

cores specified via the RTS Daemon configuration file.

The only required parameter that a real-time task shall

declare to be eligible to be scheduled with this plugin is its

period T . For this reason, it is possible that for some tasks

this plugin might not be aware of their runtime Q, hence it is

not possible to perform a proper admission test for some tasks

that could be assigned to this plugin. The adopted strategy is

to apply the well-known single-CPU FP utilization test at least

for all tasks that specify both runtime and period parameters,

unless otherwise specified by the requesting client.

Once a task is assigned to this plugin by the RTS Daemon,

a core k is selected to schedule that task using a worst-fit

allocation strategy. Given the set of tasks assigned to that core

Γk, this plugin assigns each task a priority that is inversely

proportional to the their period:

Pi ∝ 1/Ti ∀ i ∈ Γk (3)

The calculated priority for each task Pi, which is within

the range of POSIX priorities assigned to this plugin via the

RTS Daemon configuration file, is then used to schedule tasks

using SCHED_FIFO. Future versions of this plugin will let

applications choose between FIFO and RR scheduling policies.

C. FP and RR Plugins

The FP and Round Robin (RR) plugins serve as wrappers

to expose underlying POSIX functionality to applications

that use this framework. They respectively provide access to

SCHED_FIFO and SCHED_RR scheduling policies and as

such the only required parameter that shall be specified to

be accepted by either of these plugins is the desired POSIX

priority of the task P . For this reason, no admission test is

performed when submitting a task to these plugins, although a

task may still specify other parameters that may be considered

by other plugins’ admission tests. Both plugins apply a worst-

fit task allocation strategy, in this case resulting in each new

task to be assigned to the CPU core with the least number of

assigned tasks.

Notice that the priority requested via the RTS Library API

may differ from the one actually used by either of these plugins

to schedule the task, since the range of priorities that each

plugin might select may be smaller than the normal range of

POSIX priorities. In this situation, the ordering of the distinct

priorities that have been requested for each real-time task is

maintained when assigning actual POSIX priorities. However,

if the destination range of priorities is smaller than the number

of distinct priorities that have been requested some tasks

may receive the same POSIX priority even if they originally

requested two distinct ones.

V. PERFORMANCE EVALUATION

In this section we report experimental results showing the

overhead introduced by the framework when declaring a new

real-time task or modifying the parameters of an existing one.

In particular, we will show that the framework introduces

only two types of overhead when used: the first depends on

the IPC mechanism that is used to exchange data between

the clients and the RTS Daemon component and the second

depends on the type of operations performed by each plugin

on task acceptance.

Experiments were performed on a desktop platform

equipped with a multi-core Intel Core i5-2300. The machine

is configured with an Ubuntu 18.04.1 LTS distribution, Linux

kernel version 4.15.0. To maximize the reproducibility of re-

sults, our tests have been run disabling hyperthreads, disabling

CPU frequency scaling (governor set to performance and

frequency set to 1.6GHz) and Turbo Boost disabled.

The benchmarking application is a single-threaded process

that performs multiple requests to the RTS Daemon, each time

declaring an additional real-time task to be added to the current
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Figure 2. Average response time of a new real-time task allocation request
depending on the number of tasks in the current task set. Error bars represent
standard deviation over 500 experiments.

task set. Both the benchmarking application and the RTS Dae-

mon were set to run with the highest POSIX real-time priority

(99) and each was pinned on a separate core. Throttling of

real-time applications by the kernel was disabled by setting

/proc/sys/kernel/sched_rt_runtime_us to -1. Finally

to maximize the precision of our time measurements we used

the Time Stamp Counter (TSC) register to track elapsed time

within the benchmarking application.

The application performs several real-time task declarations

(without attaching any actual thread to accepted tasks) over

and over, varying the number of tasks in the task set from

1 to 1024, to evaluate whether the cost of the task admission

tests performed by each plugin depends on the number of tasks

present in the current task set at any time. Experiments were

repeated 500 times each, using a different set of 1024 random

real-time task parameters for each run.

A. Results

Figure 2 shows experimental results. The figure compares

the cost in terms of average response time of a new task

allocation request for each plugin, depending on the number

of tasks currently present in the accepted task set. From the

plot it is clear that while the response time of the EDF plugin

does not depend on the number of tasks, the RM plugin has

an increasing cost with respect to the task set size. This can

be attributed to the operations performed by the RM plugin to

update the POSIX priorities assigned to real-time tasks each

time a new task is introduced. For both solutions, the minimum

average round-trip time measured is about 16 μs, which is

clearly the cost of the UNIX socket used to exchange data

between the benchmarking application and the RTS Daemon.

Notice that this cost must be paid only when declaring a new

task or when changing the real-time parameters of an already

declared task, while during normal task scheduling operations

the overhead introduced is zero with respect to using directly

the scheduling policies exposed by the Linux kernel, since they

are the same as used by the framework to schedule each thread.

This is an advantage with respect to other similar frameworks

reviewed in section II, such as ExSched, which increases the

overhead introduced by the scheduler when used. However

developers may want to avoid sending too many parameters

change requests to the framework on the critical path of a real-

time thread, since the cost of each request is non-negligible.

VI. CONCLUSIONS

This work describes the architecture and implementation of

a novel framework that aims at simplifying access to real-time

capabilities of the Linux kernel, adopting a component-based

system design, using a declarative API model. The realization

of this framework is motivated by the recent advances in

the kernel features for real-time tasks in Linux, that need

to be followed by corresponding advancements in associated

middleware and user API services.

A. Future work

We plan to continue the development of the framework to

improve it and extend it to support more features. Energy

efficiency is one of the directions in which we intend to

improve the framework’s implementation. On architectures

that support power management techniques like Dynamic

Voltage and Frequency Scaling (DVFS), computation times

may vary depending on the frequency of the CPUs or (for

architectures like ARM big.LITTLE) by the type of the

CPU core selected to run each task. To improve the energy

awareness of the framework, a possible extension of this work

could use architecture and frequency-independent computation

time specifications that enable more energy-efficient policies

for task allocation. Also, a monitoring system might easily

add to the RTS Daemon adaptive capabilities to self-detect

or correct some of the managed task parameters and realize

adaptive strategies that can make better use of the physical

resources.

The current implementation neglects possible transients due

to new tasks entering or existing tasks leaving the system. In

these cases, mode-change protocols should be added within

the framework or plugins, using techniques such as [29].

The use of thread ids by the RTS Daemon could lead plugins

to mistakenly change the parameters of unrelated threads if the

system reuses the TIDs of terminated real-time threads over

time. In future extensions, we will consider the possibility to

use pidfds [30], that have been added recently in the Linux

kernel for cases like this. Also, the API can be extended to

accept additional parameters, like preferred or mandatory CPU

affinity constraints, or blocking times to be considered by some

more advanced admission test in the plugins.

Finally, we plan to enrich the RTS Daemon configuration to

include an access control model for the features provided by

the framework. The current implementation relies on a UNIX

socket for IPC communication (see section III-A), so permis-

sion bits and ACLs can be leveraged to limit access to the

communication channel only to specific users/groups. Direct

access to real-time features of the system by unprivileged users

(thus enforcing the use of the framework) can be inhibited via

existing features of Linux like limits.conf, while access

from root processes remains unrestricted. In the future, the

framework will allow system administrators to configure per-

user or per-application security policies.
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